首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A dual response approach using diacylglycerol (DAG) and triacylglycerol (TAG) as responses for optimization of 1-stearoyl-3(2)-oleoyl glycerol-enriched DAG synthesis using response surface methodology (RSM) was investigated. Four variables from a lipase-catalyzed esterification reaction were optimized using a central composite rotatable design. The following optimized conditions yielded 51 wt.% DAG and 22 wt.% TAG: reaction temperature of 55 °C, enzyme dosage of 9.5 wt.%, fatty acid/glycerol molar ratio of 2.1 and reaction time of 3 h. Results were repeatable at 10 kg production scale in a pilot packed-bed enzyme reactor. No significant losses in enzyme activity or changes in fatty acid selectivity on DAG synthesis were observed during the five pilot productions. Lipozyme RM IM showed selectivity towards the production of stearic acid enriched DAG. The purity of DAG oil after purification was 90 wt.%.  相似文献   

2.
The kinetics of the esterification of oleic acid with 1-butanol catalyzed by free Rhizomucor miehei lipase in a biphasic system was studied in a batch reactor. The reaction appeared to proceed via a Ping Pong bi–bi mechanism with 1-butanol inhibition. The kinetic constants of the model were determined from experiments at 30 °C with initial concentrations of oleic acid and 1-butanol in the organic phase and 0.05–0.2 g L−1 enzyme in the aqueous phase. The model was used to simulate the batch concentration profiles of the product as well as the initial reaction rates. Agreement of the model with both the batch concentration profiles (average error of 7.2%) and the initial reaction rate per experiment (average error of 16.0%) was good.  相似文献   

3.
We constructed a combinatorial yeast library through cell-surface display of the pro- and mature region of lipase from Rhizopus oryzae (ProROL) and obtained clones retaining lipase activity in fluorescent plate assay. The initial reaction rates of hydrolysis and methanolysis could be measured directly as whole-cell biocatalyst without complex treatments such as concentration, purification, and immobilization. The selected clones showed wide-ranging variation of reaction specificity. The K138R mutant showed a 1.3-fold shift of reaction specificity toward methanolysis compared to the wild type, while the V-95D, I53V, P-96S/F196Y, and Q128H/Q197L mutants showed shifts toward hydrolysis of 1.6–5.9-fold. Predictions of the mutants’ three-dimensional structure suggested that the hydrogen-bond distance between threonine 83 and aspartic acid 92 may influence reaction specificity, which shifted toward hydrolysis in mutants where this distance was shorter than in the wild type, but toward methanolysis where it was longer. The positions of amino acid residues (aa) 53, 138 and 196 in ProROL are considered the sites that influence hydrogen-bond distance and change reaction specificity. Construction of a surface-displayed combinatorial library in yeast cells is thus a powerful tool in accelerating the combinatorial approach to enzyme engineering and novel whole-cell biocatalyst development.  相似文献   

4.
The role of the Ca2+ ion that is present in the structure of Burkholderia glumae lipase was investigated. Previously, we demonstrated that the denatured lipase could be refolded in vitro into an active enzyme in the absence of calcium. Thus, an essential role for the ion in catalytic activity or in protein folding can be excluded. Therefore, a possible role of the Ca2+ ion in stabilizing the enzyme was considered. Chelation of the Ca2+ ion by EDTA severely reduced the enzyme activity and increased its protease sensitivity, however, only at elevated temperatures. Furthermore, EDTA induced unfolding of the lipase in the presence of urea. From these results, it appeared that the Ca2+ ion in B. glumae lipase fulfils a structural role by stabilizing the enzyme under denaturing conditions. In contrast, calcium appears to play an additional role in the Pseudomonas aeruginosa lipase, since, unlike B. glumae lipase, in vitro refolding of this enzyme was strictly dependent on calcium. Besides the role of the Ca2+ ion, also the role of the disulfide bond in B. glumae lipase was studied. Incubation of the native enzyme with dithiothreitol reduced the enzyme activity and increased its protease sensitivity at elevated temperatures. Therefore, the disulfide bond, like calcium, appears to stabilize the enzyme under detrimental conditions.  相似文献   

5.
The cell surface engineering system, in which functional proteins are genetically displayed on microbial cell surfaces, has recently become a powerful tool for applied biotechnology. Here, we report on the surfactant modification of surface-displayed lipase to improve its performance for enzymatic synthesis reactions. The lipase activities of the surfactant-modified yeast displaying Rhizopus oryzae lipase (ROL) were evaluated in both aqueous and nonaqueous systems. Despite the similar lipase activities of control and surfactant-modified cells in aqueous media, the treatment with nonionic surfactants increased the specific lipase activity of the ROL-displaying yeast in n-hexane. In particular, the Tween 20-modified cells increased the cell surface hydrophobicity significantly among a series of Tween surfactants tested, resulting in 8–30 times higher specific activity in organic solvents with relatively high log P values. The developed cells were successfully used for the enzymatic synthesis of phospholipids and fatty acid methyl esters in n-hexane, whereas the nontreated cells produced a significantly low yield. Our results thus indicate that surfactant modification of the cell surface can enhance the potential of the surface-displayed lipase for bioconversion.  相似文献   

6.
Construction of a starch-utilizing yeast by cell surface engineering.   总被引:10,自引:2,他引:10       下载免费PDF全文
We have engineered the cell surface of the yeast Saccharomyces cerevisiae by anchoring active glucoamylase protein on the cell wall, and we have endowed the yeast cells with the ability to utilize starch directly as the sole carbon source. The gene encoding Rhizopus oryzae glucoamylase with its secretion signal peptide was fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast alpha-agglutinin, a protein involved in mating and covalently anchored to the cell wall. The constructed plasmid containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The glucoamylase activity as not detected in the culture medium, but it was detected in the cell pellet fraction. The glucoamylase protein transferred to the soluble fraction from the cell wall fraction after glucanase treatment but not after sodium dodecyl sulfate treatment, indicating the covalent binding of the fusion protein to the cell wall. Display of the fused protein was further confirmed by immunofluorescence microscopy and immunoelectron microscopy. The transformant cells could surely grow on starch as the sole carbon source. These results showed that the glucoamylase was anchored on the cell wall and displayed as its active form. This is the first example of an application of cell surface engineering to utilize and improve the metabolic ability of cells.  相似文献   

7.
Identification and evaluation of factors important for thermostability in proteins is a growing research field with many industrial applications. This study investigates the effects of introducing a novel disulfide bond and engineered electrostatic interactions with respect to the thermostability of holo azurin from Pseudomonas aeruginosa. Four mutants were selected on the basis of rational design and novel temperature-dependent atomic displacement factors from crystal data collected at elevated temperatures. The atomic displacement parameters describe the molecular movement at higher temperatures. The thermostability was evaluated by optical spectroscopy as well as by differential scanning calorimetry. Although azurin has a high inherent stability, the introduction of a novel disulfide bond connecting a flexible loop with small alpha-helix (D62C/K74C copper-containing mutant), increased the T(m) by 3.7 degrees C compared with the holo protein. Furthermore, three mutants were designed to introduce electrostatic interactions, K24R, D23E/K128R, and D23E/K128R/K24R. Mutant K24R stabilizes loops between two separate beta-strands and D23E/K128R was selected to stabilize the C-terminus of azurin. Furthermore, D23E/K128R/K24R was selected to reflect the combination of the electrostatic interactions in D23E/K128R and K24R. The mutants involving electrostatic interactions had a minor effect on the thermostability. The crystal structures of the copper-containing mutants D62C/K74C and K24R have been determined to 1.5 and 1.8 A resolution. In addition the crystal structure of the zinc-loaded mutant D62C/K74C has also been completed to 1.8 A resolution. These structures support the selected design and provide valuable information for evaluating effects of the modifications on the thermostability of holo azurin.  相似文献   

8.
Spacer-mediated display of active lipase on the yeast cell surface   总被引:5,自引:0,他引:5  
We have constructed a Saccharomyces cerevisiae strain displaying an active lipase on the cell surface by cell surface engineering. The gene encoding Rhizopus oryzae lipase (ROL) was fused with the genes encoding the pre-alpha-factor leader sequence and the C-terminal half of alpha-agglutinin including the glycosylphosphatidylinositol-anchor attachment signal. The constructed gene was overexpressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. Linker peptides (spacers) consisting of the Gly/Ser repeat sequence were inserted at the C-terminal portion of ROL to enhance lipase activity by preserving the conformation of the active site near the C-terminal portion. Localization of the expressed ROL on the cell surface was confirmed by immunofluorescence microscopy. The ROL displayed on the yeast cell wall exhibited activity toward soluble 2,3-dimercaptopropan-1-ol tributyl ester (BALB) and insoluble triolein. The insertion of linker peptides effected the activity towards BALB, thereby demonstrating that the optimal length of linker peptides was present. The activity towards triolein was higher in lipases with longer linker peptides. ROL displayed on the cell wall exhibited a comparable and/or higher activity towards triolein than the secreted form of the enzyme. This is the first report of an active lipase displayed on the cell surface. Furthermore, insertion of a linker peptide of the appropriate length as a spacer may be an improved method to effectively display enzymes, especially those having the active region at the C-terminal portion, on the cell surface.  相似文献   

9.
To expand the functionality of lipase from Rhizopus arrhizus (RAL) we have used error-prone PCR and DNA shuffling methods to create RAL mutants with improved thermostability and the optimum temperature. One desirable mutant with three amino acids substitution was obtained. The mutated lipase was purified and characterized. The optimum temperature of the mutant lipase was higher by 10 °C than that of the wild-type RAL (WT-RAL). In addition, the thermostability characteristic of the mutant was also improved as the result of directed evolution. The half-life (T1/2) at 50 °C of the mutant exceeded those of WT-RAL by 12-fold. To confirm which substitution contributed to enhance thermostability and the optimum temperature for lipase activity, three chimeric lipases: chimeric lipase 1(CL-1; A9T), chimeric lipase 2 (CL-2; E190V) and chimeric lipase 3 (CL-3; M225I) from the WT-RAL gene were constructed. Each of the chimeric enzymes was purified and characterized. Amino acid substitution at position 190 was determined to be critical for lipase thermostability and the optimum temperature, while the residue at position 9 and 225 had only marginal effect. The mutational effect is interpreted according to a simulated three-dimensional structure for the mutant lipase.  相似文献   

10.
Long chain 3-O-acylcatechins were prepared in high yield by alcoholysis with n-butanol of the corresponding pentaacylderivatives in the presence of lipase from Mucor miehei (immobilised, Lipozyme® IM). In an alternative procedure, the mixed ester, tetraacetyl-3-O-acylcatechin, was synthesised and used as substrate for the same alcoholysis process that proceeds with higher reaction rate. The obtained 3-O-acyl derivatives are more lipophilic than the parent catechin and thus suitable for a possible application of their antioxidative properties in hydrophobic matrices.  相似文献   

11.
12.
J Eder  M Wilmanns 《Biochemistry》1992,31(18):4437-4444
A disulfide bond has been introduced in the beta/alpha-barrel enzyme N-(5'-phosphoribosyl)anthranilate isomerase from Saccharomyces cerevisiae. The design of this disulfide bond was based on a model structure of this enzyme, built from the high-resolution crystal structure of the N-(5'-phosphoribosyl)anthranilate isomerase domain from Escherichia coli. The disulfide cross-link is spontaneously formed in vitro between residues 27 and 212, located in the structurally adjacent alpha-helices 1 and 8 of the outer helical ring of the beta/alpha-barrel. It creates a loop of 184 residues that account for 83% of the sequence of this enzyme, thus forming a quasi circular protein. The cross-linked mutant enzyme displays wild-type steady-state kinetic parameters. Measurements of the equilibrium constant for the reduction of this disulfide bond by 1,4-dithiothreitol show that its bond strength is comparable to that of other engineered protein disulfide bonds. The oxidized, cross-linked N-(5'-phosphoribosyl)anthranilate isomerase mutant is about 1.0 kcal/mol more stable than the wild-type enzyme, as estimated from its equilibrium unfolding transitions by guanidine hydrochloride.  相似文献   

13.
14.
【目的】中温伯克霍尔德菌胞外脂肪酶LipA在工业领域具有重要的应用价值。利用蛋白质工程技术来提高其热稳定性,对开发脂肪酶LipA酶制剂及提高其应用范围及应用效果,具有重要的意义。【方法】利用生物信息学软件Castp、Voronoia和Cave分析LipA分子中存在的空腔及其组成氨基酸残基;利用FoldX软件构建上述氨基酸残基的突变体电子文库,并基于空腔效应(体积变小)、自由能变化值(降低)和空间结构特点等对前述突变体电子文库进行筛选。从突变体电子文库中选择具有代表性的突变体,通过基因工程技术,引入突变。经诱导表达后,实验验证并筛选出热稳定性的突变体。【结果】构建了一个由58个突变体组成的电子文库;并对其中17个代表性的突变体进行了实验验证;筛选到2个热稳定性有明显提高的突变体LipA-His15Pro和LipA-Ala210Val;其叠加突变体LipA-His~(15)Pro/Ala~(210)Val的T50~(12)较野生型LipA提高了8°C,在55°C下的半衰期较野生型脂肪酶LipA提高了23.1倍。【结论】基于空腔填充技术构建热稳定性伯克霍尔德菌胞外脂肪酶LipA突变体,是一种行之有效的策略。  相似文献   

15.
Disulfide bridges were introduced into Cry1Aa, a Bacillus thuringiensis lepidopteran toxin, to stabilize different protein domains including domain I α-helical regions thought to be involved in membrane integration and permeation. Bridged mutants could not form functional ion channels in lipid bilayers in the oxidized state, but upon reduction with β-mercaptoethanol, regained parental toxin channel activity. Our results show that unfolding of the protein around a hinge region linking domain I and II is a necessary step for pore formation. They also suggest that membrane insertion of the hydrophobic hairpin made of α-helices 4 and 5 in domain I plays a critical role in the formation of a functional pore.  相似文献   

16.
The gene encoding Rhizopus oryzae lipase (ROL) was expressed in the non-conventional yeast Yarrowia lipolytica under the control of the strong inducible XPR2 gene promoter. The effects of three different preprosequence variants were examined: a preprosequence of the Y. lipolytica alkaline extracellular protease (AEP) encoded by XPR2, the native preprosequence of ROL, and a hybrid variant of the presequence of AEP and the prosequence of ROL. Lipase production was highest (7.6 U/mL) with the hybrid prepropeptide. The recombinant protein was purified by ion-exchange chromatography. The ROL included 28 amino acids of the C-terminal region of the prosequence, indicating that proteolytic cleavage occurred below the KR site through the activity of the Kex2-like endoprotease. The optimum temperature for recombinant lipase activity was between 30 and 40 °C, and the optimum pH was 7.5. The enzyme was shown not to be glycosylated. Furthermore, recombinant ROL exhibited greater thermostability than previously reported, with the enzyme retaining 64% of its hydrolytic activity after 30 min of incubation at 55 °C.  相似文献   

17.
Different experiments using Mucor miehei CBS 370.65 were carried out to study the effect of agitation speed on the production of the mold acid protease. The experiments were conducted in shake flasks at a fixed substrate concentration of 58 g l−1 of total carbohydrates and at shaker speeds from 80 to 380 rev min−1. Enzyme production was found to be directly proportional to the shaker speeds, with the highest concentration of enzyme of 1,400 Soxhlet Rennet units (SU) ml−1 obtained at 380 rev min−1. The yield of product to substrate at 380 rev min−1 was determined to be 27,081.0 SU g−1 substrate and the productivity of the process was 221 SU g−1 h−1. Enzyme production was partially growth associated, and glucose supported both cell growth and enzyme production. Product formation and cell concentration were directly related to the rate of substrate consumption. The rate of product formation decreased when product started to accumulate, suggesting that the process was affected by feedback repression.  相似文献   

18.
Sites for Cys substitutions to form a disulfide bond were chosen in subtilisin E from Bacillus subtilis, a cysteine-free bacterial serine protease, based on the structure of aqualysin I of Thermus aquaticus YT-1 (a thermophilic subtilisin-type protease containing two disulfide bonds). Cys residues were introduced at positions 61 (wild-type, Gly) and 98 (Ser) in subtilisin E by site-directed mutagenesis. The Cys-61/Cys-98 mutant subtilisin appeared to form a disulfide bond spontaneously in the expression system used and showed a catalytic efficiency equivalent to that of the wild-type enzyme for hydrolysis of a synthetic peptide substrate. The thermodynamic characteristics of these enzymes were examined in terms of enzyme autolysis (t1/2) and thermal stability (Tm). The half-life of the Cys-61/Cys-98 mutant was found to be 2-3 times longer than that of the wild-type enzyme. Similar results were obtained by differential scanning calorimetry. The disulfide mutant showed a Tm of 63.0 degrees C, which was 4.5 degrees C higher than that observed for the wild-type enzyme. Under reducing conditions, however, the characteristics of the mutant enzyme were found to revert to those of the wild-type enzyme. These results strongly suggest that the introduction of a disulfide bond by site-directed mutagenesis enhanced the thermostability of subtilisin E without changing the catalytic efficiency of the enzyme.  相似文献   

19.
Functional expression of lipase B from Pseudozyma antarctica (PalB) in the cytoplasm of Escherichia coli BL21(DE3) and its mutant derivative Origami B(DE3) was explored. Coexpression of DsbA was found to be effective in enhancing PalB expression. The improvement was particularly pronounced with Origami B(DE3) as a host, suggesting that both folding and disulfide bond formation may be major factors limiting PalB expression. Fusion tag technique was also explored by constructing several PalB fusions for the evaluation of their expression performance. While the solubility was enhanced for most PalB fusions, only the DsbA tag was effective in boosting PalB activity, possibly by both enhanced solubility and correct disulfide bond formation. Our results suggest that PalB activity is closely associated with correct disulfide bond formation, and increased solubilization by PalB fusions does not necessarily result in activity enhancement.  相似文献   

20.
Factors that increase protein thermostability are of considerable interest in both scientific and industrial fields. Disulfide bonds are one of such factors that increase thermostability, but are rarely found in intracellular proteins because of the reducing environment of the cytosol. Here, we report the first example of an intermolecular disulfide bond between heteromeric subunits of a novel-type phosphoserine phosphatase from a thermophilic bacterium Hydrogenobacter thermophilus, which contributes to the protein thermostability at the physiological temperature. Comparison of remaining soluble proteins between wild-type and cysteine-deleted mutant using SDS-PAGE revealed that the disulfide bond increases the thermostability of the whole protein by tightly connecting a subunit with low solubility to the partner with higher solubility. Furthermore, it was strongly suggested that the disulfide bond is formed and contributes to the stability in vivo. This finding will open new avenues for the design of proteins with increased thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号