首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
海洋外来物种入侵生态学研究   总被引:9,自引:0,他引:9  
海洋外来物种入侵已成为最为严重的全球性环境问题之一。海洋生态系统类型多样、环境复杂,其生物入侵的监测、控制与管理难度相对较大。我国对陆地外来生物的入侵已开展了较为深入的研究,但对于海洋外来生物的入侵研究仍处于起步阶段,对其入侵监测、入侵机制、入侵危害的程度以及防治等问题缺乏基础数据。本文在分析国内外海洋外来生物入侵现状的基础上,概述其入侵生态学研究形势及相关成果,包括海洋外来物种的入侵途径、入侵过程、入侵生态效应以及全球变化对入侵的影响等。海洋外来生物的入侵可能对海洋生态系统造成直接或间接的影响,如种间竞争破坏生态环境、与土著种杂交造成遗传污染、病原生物及有毒藻类导致海洋生态灾害加剧等。此外,从政策和法规、入侵风险评估、监测和公共宣传教育、生物信息系统和有效管理机制等方面提出对我国海洋外来物种入侵的防治策略。本研究为我国海洋外来物种的进一步研究提供了参考。  相似文献   

2.
3.
The species richness, taxonomic diversity, and geographic distribution of pigeons and doves (Columbidae) have been altered irreversibly in Polynesia by 3500 years of human activity. Natural (without human influence) columbid faunas are estimated primarily by studying prehistoric bones. In all Polynesian island groups studied (except outlying Easter Island, Hawaiian Islands, or New Zealand), the prehistoric columbid faunas had more species, more genera, and more species per genus than modern faunas from the same island. Congeneric species pairs or triplets occurred on many islands for Ducula , Ptilinopus , and Gallicolumba. The losses of Polynesian columbids include the extinction of at least 9 species in the genera Ducula , Ptilinopus , Macropygia , Caloenas , Gallicolumba , and Didunculus as well as the extirpation of numerous island populations of extant species. If not for human impact, a typical East Polynesian island would support at least 5–6 species of columbids in 3–4 genera (compared to 0–3 species in 0–3 genera today). A typical West Polynesian island would support at least 6–7 species in 4–5 genera (compared to 1–6 species in 1–5 genera today). Since all Polynesian pigeons and doves are frugivorous and/or granivorous, their decline in recent millennia probably has affected the composition of Polynesian forests by limiting inter- and intra-island dispersal of plant propagules.  相似文献   

4.
Aim By dissolving natural physical barriers to movement, human‐mediated species introductions have dramatically reshuffled the present‐day biogeography of freshwater fishes. The present study investigates whether the antiquity of Australia's freshwater ichthyofauna has been altered by the widespread invasion of non‐indigenous fish species. Location Australia. Methods Using fish presence–absence data for historical and present‐day species pools, we quantified changes in faunal similarity among major Australian drainage divisions and among river basins of north‐eastern Australia according to the Sørensen index, and related these changes to major factors of catchment disturbance that significantly alter river processes. Results Human‐mediated fish introductions have increased faunal similarity among primary drainages by an average of 3.0% (from 17.1% to 20.1% similarity). Over three‐quarters of the pairwise changes in drainage similarity were positive, indicating a strong tendency for taxonomic homogenization caused primarily by the widespread introduction of Carassius auratus, Gambusia holbrooki, Oncorhynchus mykiss and Poecilia reticulata. Faunal homogenization was highest in drainages subjected to the greatest degree of disturbance associated with human settlement, infrastructure and change in land use. Scenarios of future species invasions and extinctions indicate the continued homogenization of Australian drainages. In contrast, highly idiosyncratic introductions of species in river basins of north‐eastern Australia have decreased fish faunal similarity by an average of 1.4%. Main conclusions We found that invasive species have significantly changed the present‐day biogeography of fish by homogenizing Australian drainages and differentiating north‐eastern river basins. Decreased faunal similarity at smaller spatial scales is a result of high historical similarity in this region and reflects the dynamic nature of the homogenization process whereby sporadic introductions of new species initially decrease faunal similarity across basins. Our study points to the importance of understanding the role of invasive species in defining patterns of present‐day biogeography and preserving the antiquity of Australia's freshwater biodiversity.  相似文献   

5.
Aim We aimed to redress a current limitation of local ecological studies (i.e. piecemeal information on specific taxa) by integrating existing ecological knowledge with quantifiable patterns in primary habitat (i.e. composition, distribution and cover) from local to continental scales. By achieving this aim, we sought to provide a biogeographical framework for the interpretation of variation in the ecology of, and threats to, subtidal rocky landscapes. Location The subtidal rocky coast of continental Australia, with longitudinal comparisons spanning > 4000 km of southern coast (115°03′ E–153°60′ E) between latitudes of 33°05′ S and 35°36′ S, and latitudinal comparisons across 26°40′ S to 37°08′ S of eastern Australia. Methods The frequency and size of patches of major benthic habitat were quantified to indicate contemporary function (ecology) and to establish patterns that may result from contrasting regional‐scale processes (biogeography). This was achieved by quantifying the composition and patchiness of key subtidal habitats across the continent and relating them to the known ecology of subsets of locations in each region. A nested design of several spatial scales (1000s, 100s, 10–1 km) was adopted to distinguish patterns at local through to biogeographical scales. Results We show biogeography (in terms of longitude and latitude) to have a fundamental influence on the patterns of abundance and composition of subtidal habitats across regional (1000s of kilometres) to local (10s of kilometres to metres) scales. Across the continent, the most fundamental patterns related to (1) the proportion of rock covered by kelp forests, as related to particular functional groups of herbivores, and (2) the small‐scale heterogeneity (metres) that characterizes these forests. Main conclusions We interpret these results within a framework of alternative processes known to maintain habitat heterogeneity across these regions (e.g. productivity versus consumption as shapers of habitat structure). These interpretations illustrate how regional differences in ecological patterns and processes can create contradictory outcomes for the management of natural resources. We suggest that researchers and managers of natural resources alike may benefit from understanding local issues (e.g. the effects of fishing and its synergies with water pollution) in their biogeographical contexts.  相似文献   

6.
We synthesize the evolutionary implications of recent advances in the fields of phylogeography, biogeography and palaeogeography for shallow‐water marine species, focusing on marine speciation and the relationships among the biogeographic regions and provinces of the world. A recent revision of biogeographic provinces has resulted in the recognition of several new provinces and a re‐evaluation of provincial relationships. These changes, and the information that led to them, make possible a clarification of distributional dynamics and evolutionary consequences. Most of the new conclusions pertain to biodiversity hotspots in the tropical Atlantic, tropical Indo‐West Pacific, cold‐temperate North Pacific, and the cold Southern Ocean. The emphasis is on the fish fauna, although comparative information on invertebrates is utilized when possible. Although marine biogeographic provinces are characterized by endemism and thus demonstrate evolutionary innovation, dominant species appear to arise within smaller centres of high species diversity and maximum interspecies competition. Species continually disperse from such centres of origin and are readily accommodated in less diverse areas. Thus, the diversity centres increase or maintain species diversity within their areas of influence, and are part of a global system responsible for the maintenance of biodiversity over much of the marine world.  相似文献   

7.
Historical (phylogenetic) biogeography and community ecology were once integrated as part of the broader study of organismal diversity, but in recent decades have become largely separate disciplines. This is unfortunate because many patterns studied by community ecologists may originate through processes studied by historical biogeographers and vice versa. In this study, we explore the causes of a geographic pattern of community structure (habitat use) in the emydid turtle assemblages of eastern North America, with more semi-terrestrial species of the subfamily Emydinae in the north and more aquatic species of Deirochelyinae in the south. Specifically, we address the factors that prevent northern emydines from invading southern communities. We test for competitive exclusion by examining patterns of range overlap, and test for the role of niche conservatism using analyses of climatic and physiological data based on a multilocus molecular phylogeny. We find no support for competitive exclusion, whereas several lines of evidence support the idea that niche conservatism has prevented northern emydines from dispersing into southern communities. Our results show how understanding the causes of patterns of historical biogeography may help explain patterns of community structure.  相似文献   

8.
M. Alonso 《Hydrobiologia》1991,225(1):37-43
A checklist of 88 freshwater Cladocera from the Iberian Peninsula is given, based on the examination of approximately 1500 samples collected from all parts of the peninsula from 1976 to 1989. Ecology and species assemblages are considered. Distribution of the species versus regional limnology of the Iberian Peninsula is discussed.  相似文献   

9.
The discovery of biogeographical patterns among microbial communities has led to a focus on the empirical evaluation of the importance of dispersal limitation in microbial biota. As a result, the spatial distribution of microbial diversity has been increasingly studied while the synthesis of biogeographical theory with microbial ecology remains undeveloped. To make biogeographical theory relevant to microbial ecology, microbial traits that potentially affect the distribution of microbial diversity need to be considered. Given that many microorganisms in natural environments are in a state of dormancy and that dormancy is an important microbial fitness trait, I provide a first attempt to account for the effects of dormancy on microbial biogeography by treating dormancy as a fundamental biogeographical response. I discuss the effects of dormancy on the equilibrium theory of island biogeography and on the unified neutral theory of biodiversity and biogeography, and suggest how the equilibrium theory of island biogeography can produce predictions approaching those of the Baas‐Becking hypothesis (i.e. everything is everywhere, but the environment selects). In addition, I present a conceptual model of the unified neutral theory of biodiversity and biogeography, generalized to account for dormancy, from which a full model can be constructed for species with or without dormant life history stages.  相似文献   

10.
Parma  S. 《Hydrobiologia》2003,491(1-3):1-8
Historical and modern migrations and dispersal of most marine organisms (intertidal, benthic, meiofaunal, planktonic, nektonic, or neustonic) are classically interpreted in terms of their natural dispersal potential. Exceptions are introduced species, largely recognized since the 19th century, known to have been transported by human activities. However, humans were transporting species along coastlines and across oceans for millennia and centuries prior to the advent of the first biological surveys. Thus, the presumptive natural distributions of many species may be questioned. Reviewed here are some basic concepts about invasions of non-native species. Human activities move species isolated in time and space from other oceans or continents, and thus human-mediated transport does not simply speed up natural dispersal processes. Both past and modern-day invasions are often overlooked, leading to an underestimation of the scale of invasion diversity and impact. Because vectors, donor regions, and recipient regions change over time, invasions will continue along long-standing but un-managed corridors. The impact of most invasions has never been studied and, therefore, it is not possible to conclude that most invasions have no impact, nor is it generally possible to say that invasions have become `integrated' into a community or ecosystem in ecological time. Finally, invasions in the ocean are not limited to harbours and ports, but are found in a wide variety of marine habitats, ranging from the open ocean continental shelf to exposed rocky shores. The existence of human-mediated vectors has created extraordinary challenges to our understanding and interpretation of the ecology, biogeography, evolutionary biology, and conservation biology of marine communities.  相似文献   

11.
Aim Shifts in species ranges are a predicted and realized effect of global climate change; however, few studies have addressed the rates and consequence of such shifts, particularly in marine systems. Given ecological similarities between shifting and introduced species, we examined how our understanding of range shifts may be informed by the more established study of non‐native species introductions. Location Marine systems world‐wide. Methods Database and citation searches were used to identify 129 marine species experiencing range shifts and to determine spread rates and impacts on recipient communities. Analyses of spread rates were based on studies for which post‐establishment spread was reported in linear distance. The sizes of the effects of community impacts of shifting species were compared with those of functionally similar introduced species having ecologically similar impacts. Results Our review and meta‐analyses revealed that: (1) 75% of the range shifts found through the database search were in the poleward direction, consistent with climate change scenarios, (2) spread rates of range shifts were lower than those of introductions, (3) shifting species spread over an order of magnitude faster in marine than in terrestrial systems, and (4) directions of community effects were largely negative and magnitudes were often similar for shifters and introduced species; however, this comparison was limited by few data for range‐shifting species. Main conclusions Although marine range shifts are likely to proceed more slowly than marine introductions, the community‐level effects could be as great, and in the same direction, as those of introduced species. Because it is well‐established that introduced species are a primary threat to global biodiversity, it follows that, just like introductions, range shifts have the potential to seriously affect biological systems. In addition, given that ranges shift faster in marine than terrestrial environments, marine communities might be affected faster than terrestrial ones as species shift with climate change. Regardless of habitat, consideration of range shifts in the context of invasion biology can improve our understanding of what to expect from climate change‐driven shifts as well as provide tools for formal assessment of risks to community structure and function.  相似文献   

12.
The presence and impacts of non‐indigenous species (NIS) in marine areas of high conservation or World Heritage significance have rarely been examined. Case studies worldwide suggest that the potential exists for the introduction of NIS to significantly impact conservation values in regions conserved for the uniqueness and diversity of native assemblages. In this study, a preliminary investigation was conducted to provide information essential for managing marine introductions in the Shark Bay World Heritage Property. A focused fouling plate survey sampled a total of 112 encrusting taxa, of which 10 (11.2%) were classified as introduced and 10 others as cryptogenic. Eight introduced bryozoans: Aetea anguina (Linnaeus, 1758), Bugula neritina (Linnaeus, 1758), Bugula stolonifera Ryland, 1960, Conopeum seurati (Canu, 1928), Savignyella lafontii (Audouin, 1826), Schizoporella errata (Waters, 1878), Watersipora subtorquata (d’Orbigny, 1842) and Zoobotryon verticellatum della Chiaje, 1828; one tunicate, Styela plicata Lesueur, 1823; and an introduced hydroid, Obelia dichotoma (Linnaeus, 1758) were frequent, and in some cases dominant, components of encrusting communities. Of the 20 most frequently occurring species detected in the Bay, four were introduced and of the 20 species with highest average percent cover per plate, six were introduced. At one site, space occupation by NIS averaged 71.6% ± 7.4 of plate live cover. Space occupation by an individual NIS was as high as 62.4% of plate area (mean 7.82% ± 1.8). NIS were detected at sites lacking commercial traffic and ballast water discharge and isolated by distance and physical environment, suggesting that hull fouling of recreational craft may be the most important vector in the region. Seventy‐five percent of NIS detected in Shark Bay are established in Australian ports to the south of Shark Bay, while 33% are established to the north, tentatively implicating temperate affinity NIS and the movement of vessels from Australian ports south of Shark Bay as a greater risk to the region.  相似文献   

13.
Island biogeography is the study of the spatio-temporal distribution of species, communities, assemblages or ecosystems on islands and other isolated habitats. Island diversity is structured by five classes of process: dispersal, establishment, biotic interactions, extinction and evolution. Classical approaches in island biogeography focused on species richness as the deterministic outcome of these processes. This has proved fruitful, but species traits can potentially offer new biological insights into the processes by which island life assembles and why some species perform better at colonising and persisting on islands. Functional traits refer to morphological and phenological characteristics of an organism or species that can be linked to its ecological strategy and that scale up from individual plants to properties of communities and ecosystems. A baseline hypothesis is for traits and ecological strategies of island species to show similar patterns as a matched mainland environment. However, strong dispersal, environmental and biotic-interaction filters as well as stochasticity associated with insularity modify this baseline. Clades that do colonise often embark on distinct ecological and evolutionary pathways, some because of distinctive evolutionary forces on islands, and some because of the opportunities offered by freedom from competitors or herbivores or the absence of mutualists. Functional traits are expected to be shaped by these processes. Here, we review and discuss the potential for integrating functional traits into island biogeography. While we focus on plants, the general considerations and concepts may be extended to other groups of organisms. We evaluate how functional traits on islands relate to core principles of species dispersal, establishment, extinction, reproduction, biotic interactions, evolution and conservation. We formulate existing knowledge as 33 working hypotheses. Some of these are grounded on firm empirical evidence, others provide opportunities for future research. We organise our hypotheses under five overarching sections. Section A focuses on plant functional traits enabling species dispersal to islands. Section B discusses how traits help to predict species establishment, successional trajectories and natural extinctions on islands. Section C reviews how traits indicate species biotic interactions and reproduction strategies and which traits promote intra-island dispersal. Section D discusses how evolution on islands leads to predictable changes in trait values and which traits are most susceptible to change. Section E debates how functional ecology can be used to study multiple drivers of global change on islands and to formulate effective conservation measures. Islands have a justified reputation as research models. They illuminate the forces operating within mainland communities by showing what happens when those forces are released or changed. We believe that the lens of functional ecology can shed more light on these forces than research approaches that do not consider functional differences among species.  相似文献   

14.
Previous research has shown that both environmental and historical factors influence the taxonomic structure of animal communities; yet, the relative importance of these effects is not known for primates. Environmental characteristics shape the possible niches in a community, providing suitable habitats for some species and not others. Therefore, communities found in similar environments should display similar species compositions. Additionally, geography may be viewed as a surrogate for historical processes. For instance, as the geographic distance between communities increases, dispersal between sites is more limited, and the probability of historical vicariance increases. Therefore, communities in close proximity to each other should exhibit similar species compositions. The geographic location, environmental characteristics, and species composition of 168 primate communities were gathered from the literature. Canonical correspondence analyses were conducted to examine the relative effects of geographic distance and environmental variables on the taxonomic structure of communities. In addition, UPGMA cluster analyses were conducted to better visualize the taxonomic similarity of communities. Spatial variables were significant predictors of community structure in all regions. Rainfall patterns explained African, Malagasy, and Neotropical community structure. In addition, maximum temperature was also correlated with community structure in Madagascar and the Neotropics. No climatic variables predicted Asian community structure. These results demonstrate that both historical and environmental factors play a significant role in structuring modern primate communities; yet, the importance of environmental factors depend on the region in question. Am J Phys Anthropol, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
In 1999, the edited volume Primate Communities presented several studies that examined broad‐scale patterns of primate diversity.1 Similar studies were being conducted on nonprimate taxa; advances in data availability and statistical approaches were allowing scientists to investigate a variety of new questions and to reexamine classical questions in novel ways. While such studies on nonprimate taxa have continued at a steady pace, they have only crept forward for primate species (Fig. 1 ). In the intervening time, the field of macroecology (Box 1) rapidly developed and has resulted in several books 2 - 4 and the establishment of new research institutes. We suggest that examining primate communities, especially in a macroecological context, is an important line of research for our field to embrace and an area where biological anthropologists can provide major contributions. We review the current state of research, describe new datasets and research tools, and suggest future research directions.  相似文献   

16.
Terrestrial ecosystems of southern ocean islands have enjoyed renewed attention recently owing to the discovery that their climates are changing dramatically. This has led to an enhanced understanding of the biogeography of this region, and an increased awareness that these ecosystems provide unrivalled opportunities for investigating the impacts of environmental change on interactions between invasive and indigenous species. Recent studies have revealed increases in the abundance of established alien species and in the strength of their negative impacts on local biota, especially through indirect interactions. Also, increases in island temperature and human visitor frequency are likely to result in increasing numbers of successful alien colonization events.  相似文献   

17.
Despite a century of research into the factors that generate and maintain biodiversity, we know remarkably little about the drivers of parasite diversity. To identify the mechanisms governing parasite diversity, we combined surveys of 8100 amphibian hosts with an outdoor experiment that tested theory developed for free‐living species. Our analyses revealed that parasite diversity increased consistently with host diversity due to habitat (i.e. host) heterogeneity, with secondary contributions from parasite colonisation and host abundance. Results of the experiment, in which host diversity was manipulated while parasite colonisation and host abundance were fixed, further reinforced this conclusion. Finally, the coefficient of host diversity on parasite diversity increased with spatial grain, which was driven by differences in their species–area curves: while host richness quickly saturated, parasite richness continued to increase with neighbourhood size. These results offer mechanistic insights into drivers of parasite diversity and provide a hierarchical framework for multi‐scale disease research.  相似文献   

18.
The horizontal temperature zones of the earth tend to restrict the latitudinal ranges of species but allow the possibility of exceedingly broad longitudinal dispersals. In the Tropical Zone, biodiversity on the continental shelves is not homogeneous but is concentrated in two conspicuous peaks, one in the Indo‐Pacific Ocean and the other in the Atlantic. The Indo‐Pacific biodiversity peak is located within a relatively small area called the East Indies Triangle. The Atlantic peak is located in the southern Caribbean Sea. Evidence that has been accumulated over the years indicates that each area functions as a centre of origin and evolutionary radiation. What are the causes of these concentrations and their present functions? A newly published model indicates a positive relationship between environmental temperature and the rate of speciation. While this helps to explain the generally high tropical diversity, and the negative relationship between diversity and latitude, it does not provide a reason for the longitudinal concentrations. But, other new research serves to substantiate previous indications of a positive relationship between speciation rate and species diversity. The existence of this positive feedback, together with some contributory factors, provides the reason why concentrations occur. The evolutionary radiation probably begins when the build‐up of species diversity reaches a critical level. The warm‐temperate biotas are derived from the tropics. Their northern longitudinal relationships tend to be minor but, in the southern hemisphere, the West Wind Drift is an important dispersal mechanism for both warm‐temperate and cold‐temperate species. The cold‐temperate biotas peaked in two areas, the North Pacific and the Antarctic; each has developed into a centre of origin. The continuous dispersal of well‐adapted species from the centres helps peripheral communities maintain diversity.  相似文献   

19.
Rivers are conduits for materials and energy; this, the frequent and intense disturbances that these systems experience, and their narrow, linear nature, create problems for conservation of biodiversity and ecosystem functioning in the face of increasing human influence. In most parts of the world, riparian zones are highly modified. Changes caused by alien plants — or environmental changes that facilitate shifts in dominance creating novel ecosystems — are often important agents of perturbation in these systems. Many restoration projects are underway. Objective frameworks based on an understanding of biogeographical processes at different spatial scales (reach, segment, catchment), the specific relationships between invasive plants and resilience and ecosystem functioning, and realistic endpoints are needed to guide sustainable restoration initiatives. This paper examines the biogeography and the determinants of composition and structure of riparian vegetation in temperate and subtropical regions and conceptualizes the components of resilience in these systems. We consider changes to structure and functioning caused by, or associated with, alien plant invasions, in particular those that lead to breached abiotic‐ or biotic thresholds. These pose challenges when formulating restoration programmes. Pervasive and escalating human‐mediated changes to multiple factors and at a range of scales in riparian environments demand innovative and pragmatic approaches to restoration. The application of a new framework accommodating such complexity is demonstrated with reference to a hypothetical riparian ecosystem under three scenarios: (1) system unaffected by invasive plants; (2) system initially uninvaded, but with flood‐generated incursion of alien plants and escalating invasion‐driven alteration; and (3) system affected by both invasions and engineering interventions. The scheme has been used to derive a decision‐making framework for restoring riparian zones in South Africa and could guide similar initiatives in other parts of the world.  相似文献   

20.
Ecological networks have classically been studied at site and landscape scales, yet recent efforts have been made to collate these data into global repositories. This offers an opportunity to integrate and upscale knowledge about ecological interactions from local to global scales to gain enhanced insights from the mechanistic information provided by these data. By drawing on existing research investigating patterns in ecological interactions at continental to global scales, we show how data on ecological networks, collected at appropriate scales, can be used to generate an improved understanding of many aspects of ecology and biogeography—for example, species distribution modelling, restoration ecology and conservation. We argue that by understanding the patterns in the structure and function of ecological networks across scales, it is possible to enhance our understanding of the natural world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号