首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabetic tissues are enriched in an "activated" form of human aldose reductase (hAR), a NADPH-dependent oxidoreductase involved in sugar metabolism. Activated hAR has reduced sensitivity to potential anti-diabetes drugs. The C298S mutant of hAR reproduces many characteristics of activated hAR, although it differs from wild-type hAR only by the replacement of a single sulfur atom with oxygen. Isothermal titration calorimetry measurements revealed that the binding constant of NADPH to the C298S mutant is decreased by a factor of two, whereas that of NADP(+) remains the same. Similarly, the heat capacity change for the binding of NADPH to the C298S mutant is twice increased; however, there is almost no difference in the heat capacity change for binding of the NADP(+) to the C298S. X-ray crystal structures of wild-type and C298S hAR reveal that the side chain of residue 298 forms a gate to the nicotinamide pocket and is more flexible for cysteine compared with serine. Unlike Cys-298, Ser-298 forms a hydrogen bond with Tyr-209 across the nicotinamide ring, which inhibits movements of the nicotinamide. We hypothesize that the increased polarity of the oxidized nicotinamide weakens the hydrogen bond potentially formed by Ser-298, thus, accounting for the relatively smaller effect of the mutation on NADP(+) binding. The effects of the mutant on catalytic rate constants and binding constants for various substrates are the same as for activated hAR. It is, thus, further substantiated that activated hAR arises from oxidative modification of Cys-298, a residue near the nicotinamide binding pocket.  相似文献   

2.
Each of the four identical subunits of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase contains two cysteine residues, Cys156 and Cys296 (Beach, M. J., and Rodwell, V. W. (1989) J. Bacteriol. 171, 2994-3001). Both are accessible to modification by sulfhydryl reagents under nondenaturing conditions (Jordan-Starck, T. C., and Rodwell, V. W. (1989) J. Biol. Chem. 264, 17913-17918). We used site-directed mutagenesis to construct three mutant enzymes in which alanine replaced either or both cysteine residues. Mutant enzymes C156A, C296A, and C156/296A were over-expressed in Escherichia coli and were found to be fully active. Following their purification, all four forms of the enzyme were compared with respect to their catalytic efficiency, their affinities for the substrates of all four catalyzed reactions, and for their sensitivity to inactivation by sulfhydryl reagents. Replacement of cysteine residues with alanine residues had no major effect on either the specific activity or the affinity of the enzymes for any substrate. The mutants catalyzed all four HMG-CoA reductase reactions as efficiently as did the wild-type enzyme, and coenzyme A stimulated mevaldehyde reduction to the same extent as for wild-type HMG-CoA reductase. Mutant C156A and the cysteine-free mutant C156/296A were not inactivated by 5,5'-dithiobis(2-nitrobenzoate). By contrast, mutant C296A was inactivated to the same extent as was the wild-type enzyme. Following treatment of the mutant enzymes with N-ethylmaleimide, the four reductase reactions catalyzed by mutant C296A were inactivated to the same extent as for the wild-type enzyme. Neither mutant C156A nor C156/296A was affected by this reagent. We conclude that the sulfhydryl reagent-reactive group whose derivatization leads to loss of enzymatic activity is Cys156. However, this residue is not an essential active site residue since neither substrate binding nor catalysis was affected when it was replaced by alanine. Possible roles of cysteine in maintaining structural stability are discussed.  相似文献   

3.
Human NADH-cytochrome b5 reductase (EC 1.6.2.2) contains 4 cyteine residues (Cys-203, -273, -283, and -297). Cys-283 was previously proposed to be involved in NADH binding by chemical modification (Hackett, C. S., Novoa, W. B., Ozols, J., and Strittmatter, P. (1986) J. Biol. Chem. 261, 9854-9857). In the present study the role of cysteines in the enzyme was probed by replacing these residues by Ser, Ala, or Gly employing site-directed mutagenesis and chemical modification. Four mutants, in which 1 of the 4 Cys residues was replaced by Ser, retained comparable kcat and Km values to those of the wild type. All of these mutants were as sensitive as the wild type to treatment with SH modifiers, while a double mutant, C273S/C283S was resistant. Since inhibition by SH modifiers was protected by NADH, Cys-273 and Cys-283 were implicated to be close to the NADH-binding site. C273A and C273A/C283A mutants showed approximately one-fifth of the enzyme-FAD reduction rate of the wild type as revealed by steady-state kinetics and by stopped-flow analysis. Anaerobic titration has shown that reduction and re-oxidation processes including formation of the red semiquinone of these mutants were not significantly altered from those of the wild type. From these results it was concluded that none of the Cys residues of the enzyme are essential in the catalytic reaction, but Cys-273 conserved among the enzymes homologous to NADH-cytochrome b5 reductase homologous to NADH-cytochrome b5 reductase plays role(s) in facilitating the reaction. A difference spectrum with a peak at 317 nm, which was formerly considered to be derived from the interaction between NAD+ and Cys-283 of the reduced enzyme, appeared upon binding of NAD+ not only to the reduced wild type enzyme but also to the C273A/C283A mutant in which both of the Cys residues close to the NADH-binding site were replaced.  相似文献   

4.
In order to elucidate the role of particular amino acid residues in the catalytic activity and conformational stability of human aldolases A and B [EC 4.1.2.13], the cDNAs encoding these isoenzyme were modified using oligonucleotide-directed, site-specific mutagenesis. The Cys-72 and/or Cys-338 of aldolase A were replaced by Ala and the COOH-terminal Tyr of aldolases A and B was replaced by Ser. The three mutant aldolases A thus prepared, A-C72A, A-C338A, and A-C72,338A, were indistinguishable from the wild-type enzyme with respect to general catalytic properties, while the replacement of Tyr-363 by Ser in aldolase A (A-Y363S) resulted in decreases of the Vmax of the fructose-1, 6-bisphosphate (FDP) cleavage reaction, activity ratio of FDP/fructose-1-phosphate (F1P), and the Km values for FDP and F1P. The wild-type and all the mutant aldolase A proteins exhibited similar thermal stabilities. In contrast, the mutant aldolase A proteins were more stable than the wild-type enzyme against tryptic and alpha-chymotryptic digestions. Based upon these results it is concluded that the strictly conserved Tyr-363 of human aldolase A is required for the catalytic function with FDP as the substrate, while neither Cys-72 nor Cys-338 directly takes part in the catalytic function although the two Cys residues may be involved in maintaining the correct spatial conformation of aldolase A. Replacement of Tyr-363 by Ser in human aldolase B lowered the Km value for FDP appreciably and also diminished the stability against elevated temperatures and tryptic digestion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The role of the three cysteine residues at positions 13, 63 and 133 in Escherichia coli RNAase H, an enzyme that is sensitive to N-ethylmaleimide [Berkower, Leis & Hurwitz (1973) J. Biol. Chem. 248, 5914-5921], was examined by using both site-directed mutagenesis and chemical modification. Novel aspects that were found are as follows. First, none of the cysteine residues is required for activity. Secondly, chemical modification of either Cys-13 or Cys-133 with thiol-blocking reagents inactivates the enzyme, but that of Cys-63 does not. Thus the sensitivity of E. coli RNAase H to N-ethylmaleimide arises not from blocking of the thiol group but from steric hindrance by the modifying group incorporated at either Cys-13 or Cys-133.  相似文献   

6.
Human aldose reductase (EC 1.1.1.21) and aldehyde reductase (EC 1.1.1.2) are implicated in the development of diabetic complications by a variety of mechanisms, and a number of drugs to inhibit these enzymes have been proposed for the therapy and prevention of these complications. To probe the structure and function of these two enzymes, we used site-directed mutagenesis in the cDNAs of both enzymes to replace lysine 262 with methionine. Wild-type and mutant enzymes were overexpressed in Escherichia coli and purified by anion exchange and affinity chromatography. N-terminal sequence analysis, Western blots, and kinetic studies confirmed the identity of the recombinant wild-type enzymes with the native human placental and liver enzymes. Recombinant aldose reductase (hAR) and aldehyde reductase (hGR) have apparent kinetic constants virtually identical to their respective native enzymes. The mutant aldose reductase (hARK262 greater than M) shows a 66-fold increase in Km for NADPH with respect to the wild type (1.9 +/- 0.4 microM versus 125 +/- 14 microM), whereas the Km for DL-glyceraldehyde increased 35-fold (20 +/- 2 versus 693 +/- 41 microM). The same constants for the mutant aldehyde reductase (hGRK262 greater than M) increased 97- and 86-fold, respectively (from 2.0 +/- 0.4 to 194 +/- 16 microM and from 1.6 +/- 0.4 to 137 +/- 3 mM). These results indicate that lysine 262 in aldose reductase and aldehyde reductase is crucial to their catalytic activity by affecting co-factor binding.  相似文献   

7.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multimeric protein complex consisting of three distinct and separate components: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source and has a distinct architecture that is characteristic of the ATP-grasp superfamily of enzymes. Included in this superfamily are d-Ala d-Ala ligase, glutathione synthetase, carbamyl phosphate synthetase, N(5)-carboxyaminoimidazole ribonucleotide synthetase, and glycinamide ribonucleotide transformylase, all of which have known three-dimensional structures and contain a number of highly conserved residues between them. Four of these residues of biotin carboxylase, Lys-116, Lys-159, His-209, and Glu-276, were selected for site-directed mutagenesis studies based on their structural homology with conserved residues of other ATP-grasp enzymes. These mutants were subjected to kinetic analysis to characterize their roles in substrate binding and catalysis. In all four mutants, the K(m) value for ATP was significantly increased, implicating these residues in the binding of ATP. This result is consistent with the crystal structures of several other ATP-grasp enzymes, which have shown specific interactions between the corresponding homologous residues and cocrystallized ADP or nucleotide analogs. In addition, the maximal velocity of the reaction was significantly reduced (between 30- and 260-fold) in the 4 mutants relative to wild type. The data suggest that the mutations have misaligned the reactants for optimal catalysis.  相似文献   

8.
Mutagenesis of H-68 or -148 in Clostridium perfringens alpha-toxin resulted in complete loss of hemolytic, phospholipase C, sphingomyelinase, and lethal activities of the toxin. These activities of the variant toxin at H-126 or -136 decreased by approximately 100-fold of the activities of the wild-type toxin. Mutation at H-46, -207, -212, or -241 showed no effect on the biological activities, indicating that these residues are not essential for these activities. The variant toxin at H-11 was not detected in culture supernatant and in cells of the transformant carrying the variant toxin gene. Wild-type toxin and the variant toxin at H-148 bound to erythrocytes in the presence of Ca2+; however, the variant toxins at H-68, -126, and -136 did not. Co2+ and Mn2+ ions stimulated binding of the variant toxin at H-68, -126, and -136 to membranes in the presence of Ca2+ and caused an increase in hemolytic activity. Wild-type toxin and the variant toxins at H-68, -126, and -136 contained two zinc atoms in the molecule. Wild-type toxin inactivated by EDTA contained two zinc atoms. These results suggest that wild-type toxin contains two tightly bound zinc atoms which are not coordinated to H-68, -126, and -136. The variant toxin at H-148 possessed only one zinc atom. Wild-type toxin and the variant toxin at H-148 showed [65Zn]2+ binding, but the variant toxins at H-68, -126, and -136 did not. Furthermore, [65Zn]2+ binding to wild-type toxin was competitively inhibited by unlabeled Zn2+, Co2+, and Mn2+. These results suggest that H-68, -126, and -136 residues bind an exchangeable and labile metal which is important for binding to membranes and that H-148 tightly binds one zinc atom which is essential for the active site of alpha-toxin.  相似文献   

9.
The production of polyols in vitro by highly purified aldose reductase (EC 1.1.1.21) was monitored by g.l.c. In the presence of NADPH aldose reductase reduced glucose, galactose and xylose to the respective polyols sorbitol, galactitol and xylitol. The rates of formation of these polyols closely mirrored the Km values for the substrates obtained from kinetic measurements that monitored the rate of disappearance of NADPH. No polyol production occurred in the absence of purified aldose of purified aldose reductase, and analysis by g.l.c. revealed only the presence of unchanged monosaccharides. Addition of the aldose reductase inhibitor sorbinil to purified rat lens aldose reductase incubated with xylose in the presence of NADPH resulted in decreased xylitol production. However, aldose reductase inhibitors produced no effect in altering the rate of Nitro Blue Tetrazolium formation from either glucose or xylose, indicating that the observed inhibition in vitro does not result from a free-radical-scavenger effect.  相似文献   

10.
We have investigated the role of serine 40 (Ser-40) in tyrosine hydroxylase (TH) catalysis of basal and activated enzymes by protein kinase A (PKA)-mediated phosphorylation. Wild type and mutant TH were transiently and stably expressed in AtT-20 cells, and the enzymatic activities of the recombinant enzymes were analyzed. The specific enzymatic activity of transiently expressed TH mutants Ser-40-->leucine or-->tyrosine (Leu-40m or Tyr-40m) was higher than that of the wild type enzyme or of other mutants in which Ser-8, -19, and -31 were replaced by leucine. The kinetic studies carried out with the stably expressed TH show that the Km for the cofactor 6-methyltetrahydropterine is lower and the Ki for dopamine is higher when the enzymatic hydroxylation is catalyzed by the Leu-40m or Tyr-40m than by the wild type enzyme. The kinetic parameters and the pH profile of the enzymatic hydroxylation catalyzed by the Leu-40m or Tyr-40m are similar to the enzyme activated by PKA-mediated phosphorylation. We suggest that Ser-40 in TH exerts an inhibitory influence on the enzymatic activity, and its replacement with another amino acid by site-directed mutagenesis or its modification by phosphorylation leads to a change in conformation with an increased enzymatic activity. The importance of Ser-40 in the activation of TH by PKA-mediated phosphorylation was investigated by comparing the activation of the wild type enzyme with that of Leu-40m or Tyr-40m. The findings that the enzymatic activity is increased by PKA-mediated phosphorylation of the wild type enzyme, but not of the Leu-40m or Tyr-40m, demonstrate that phosphorylation at Ser-40 is essential for activation of TH by PKA. The findings that addition of ATP plus cAMP to homogenates from transfected AtT-20 cells stimulates the recombinant wild type TH activity indicate that these cells contain endogenous cAMP-dependent protein kinase.  相似文献   

11.
Site-directed mutagenesis of Bacillus subtilis N7 alpha-amylase has been performed to evaluate the roles of the active site residues in catalysis and to prepare an inactive catalytic-site mutant that can form a stable complex with natural substrates. Mutation of Asp-176, Glu-208, and Asp-269 to their amide forms resulted in over a 15,000-fold reduction of its specific activity, but all the mutants retained considerable substrate-binding abilities as estimated by gel electrophoresis in the presence of soluble starch. Conversion of His-180 to Asn resulted in a 20-fold reduction of kcat with a 5-fold increase in Km for a maltopentaose derivative. The relative affinities for acarbose vs. maltopentaose were also compared between the mutants and wild-type enzyme. The results are consistent with the roles previously proposed in Taka-amylase A and porcine pancreatic alpha-amylase based on their X-ray crystallographic analyses, although different pairs had been assigned as catalytic residues for each enzyme. Analysis of the residual activity of the catalytic-site mutants by gel electrophoresis has suggested that it derived from the wild-type enzyme contaminating the mutant preparations, which could be removed by use of an acarbose affinity column; thus, these mutants are completely devoid of activity. The affinity-purified mutant proteins should be useful for elucidating the complete picture of the interaction of this enzyme with starch.  相似文献   

12.
Using site-directed mutagenesis of the human beta 2-adrenergic receptor and continuous expression in B-82 cells, the role of 3 conserved cysteines in transmembrane domains and 2 conserved cysteines in the third extracellular domain in receptor function was examined. Cysteine was replaced with serine in each mutant receptor as this amino acid is similar to cysteine in size but it cannot form disulfide linkages. Replacement of cysteine residues 77 and 327, in the second and seventh transmembrane-spanning domains, respectively, had no effect on ligand binding or the ability of the receptor to mediate isoproterenol stimulation of adenylate cyclase. Substitution of cysteine 285, in the sixth transmembrane domain of the receptor, produced a mutant receptor with normal ligand-binding properties but a significantly attenuated ability to mediate stimulation of adenylate cyclase. Mutation of cysteine residues 190 and 191, in the third extracellular loop of the beta 2 receptor, had qualitatively similar effects on ligand binding and isoproterenol-mediated stimulation of adenylate cyclase. Replacement of either of these residues with serine produced mutant receptors that displayed a marked loss in affinity for both beta-adrenergic agonists and antagonists. Replacement of both cysteine 190 and 191 with serine had an even greater effect on the ability of the receptor to bind ligands. Consistent with the loss of Ser190 and/or Ser191 mutant receptor affinity for agonists was a corresponding shift to the right in the dose-response curve for isoproterenol-induced increases in intracellular cyclic AMP concentrations in cells expressing the mutant receptors. These data implicate one of the conserved transmembrane cysteine residues in the human beta 2-adrenergic receptor in receptor activation by agonists and also suggest that conserved cysteine residues in an extracellular domain of the receptor may be involved in ligand binding.  相似文献   

13.
The four residues of human glutathione S-transferase P1-1 whose counterparts were indicated by X-ray crystallography to reside in the GSH-binding site of pig glutathione S-transferase P1-1 were individually replaced with threonine or alanine by site-directed mutagenesis to obtain mutants R13T, K44T, Q51A, and Q64A. The kinetic parameters, susceptibilities to an inhibitor, S-hexyl-GSH, and affinities for GSH-Sepharose of the latter were compared with those of the wild-type enzyme, and pKa of the thiol group of GSH bound in R13T was shown to be equivalent to that in the wild type. From the results, Lys44, Gln51, and Gln64 were deduced to contribute to the binding of GSH. On the other hand, Arg13 seems to be essential for the enzymatic activity as mainly involved in the construction of a proper structure of the active site.  相似文献   

14.
Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group.  相似文献   

15.
O L Francone  C J Fielding 《Biochemistry》1991,30(42):10074-10077
The functions of serine residues at positions 181 and 216 of human plasma lecithin:cholesterol acyltransferase have been studied by site-directed mutagenesis. The serine residue at either site was replaced by alanine, glycine, or threonine in LCAT secreted from stably transfected CHO cells. All substitutions at position 181 gave rise to an enzyme product that was normally secreted but had no detectable catalytic activity. On the other hand, all substitutions at position 216 gave active products, whose activity was fully inhibitable by the serine esterase inhibitor diisopropyl fluorophosphate (DFP). A secondary (although not direct) role for serine-216 was indicated by a 14-fold increase in catalytic rate when this residue was substituted by alanine. Sequence comparison with other lipases suggests that serine-216 may be at or near the hinge of a helical flap displaced following substrate binding. These data strengthen the structural-functional relationship between LCAT and other lipases.  相似文献   

16.
Site-mutations were introduced into putative cation binding site 1 of the H,K-ATPase at glu-797, thr-825, and glu-938. The side chain oxygen of each was not essential but the mutations produced different activation and inhibition kinetics. Site mutations thr-825 (ala, leu) and glu-938 (ala, gln) modestly decreased the apparent affinity to K+, while glu-797 (gln) was equivalent to wild type. As expected of competitive inhibition, mutations of thr-825 and glu-938 that decreased the apparent affinity for K+ also increased the apparent affinity for SCH28080. This is consistent with the participation of thr-825 and glu-938 in a cation binding domain. The sidechain geometry, but not the sidechain charge of glu-797, is essential to ATPase function as the site mutant glu-797 (gly) inactivated the H,K-ATPase, while glu-797 (gln) was active but the apparent affinity to SCH 28080 was decreased by four-fold. Lys-793, a unique residue of the H,K-ATPase, was essential for ATPase function. Since this residue is adjacent to site 1, the result suggests that charge pairing between lys-793 and residues at or near this site may be essential to ATPase function.  相似文献   

17.
Human prorenin is an inactive zymogen comprising 43 amino acid residues at the amino terminus of human renin. The aim of this work was to determine why prorenin is inactive at neutral pH. Eighteen different mutant prorenins, in which positively charged residues in the propeptide were substituted with either glutamine (Gln) or lysine (Lys) residues by site-directed mutagenesis, were expressed in COS-7 cells and characterized. By replacing each of the three arginine (Arg) residues (Arg10P, Arg15P, and Arg20P) with Gln residues, partially active prorenins were produced, which exhibited significant but not full renin activity without trypsin activation. The effect of double or triple amino acid substitutions on the appearance of active prorenin was cumulative, the activity reaching about 80% in a mutant in which all the three Arg residues were replaced by Gln residues. In contrast, mutant prorenins with Lys residues substituted for the Arg residues were inactive. These results clearly indicate that the positive charges of the three Arg residues are essential for maintenance of the human prorenin in an inactive form.  相似文献   

18.
The rat cytosolic glutathione S-transferase Ya subunit contains three histidine residues (at positions 8, 143, and 159), two cysteine residues (at positions 18 and 112), and a single tryptophan residue (at position 21). Histidine, cysteine, and tryptophan have been proposed to be present either near or at the active site of other glutathione S-transferase subunits. The functional role of these amino acids at each of the positions was evaluated by site-directed mutagenesis in which valine or asparagine, alanine, and phenylalanine were substituted for histidine, cysteine, and tryptophan, respectively. Mutant enzymes H8V, H143V, H159N, C112A, and W21F retained either full or better catalytic efficiencies (k(cat)/Km) toward 1-chloro-2,4-dinitrobenzene and glutathione. Lower but significant k(cat)/Km values were observed for H159V and C18A toward 1-chloro-2,4-dinitrobenzene. Some mutants displayed different thermal stabilities and intrinsic fluorescence intensities, but all retained the ability to bind heme. These results indicate that histidine, cysteine, and tryptophan in the glutathione S-transferase Ya subunit are not essential for catalysis nor are they involved in the binding of heme to the YaYa homodimer.  相似文献   

19.
Heparanase is an endo-beta-D-glucuronidase that degrades heparan sulfate in the extracellular matrix and cell surfaces. Human proheparanase is produced as a latent 65-kDa polypeptide undergoing processing at two potential proteolytic cleavage sites, located at Glu109-Ser110 (site 1) and Gln157-Lys158 (site 2). Cleavage of proheparanase yields 8- and 50-kDa subunits that heterodimerize to form the active enzyme. The fate of the linker segment (Ser110-Gln157) residing between the two subunits, the mode of processing, and the protease(s) engaged in proheparanase processing are currently unknown. We applied multiple site-directed mutagenesis and deletions to study the nature of the potential cleavage sites and amino acids essential for processing of proheparanase in transfected human choriocarcinoma cells devoid of endogenous heparanase but possessing the enzymatic machinery for proper processing and activation of the proenzyme. Although mutagenesis at site 1 and its flanking sequences failed to identify critical residues for proteolytic cleavage, processing at site 2 required a bulky hydrophobic amino acid at position 156 (i.e. P2 of the cleavage site). Substitution of Tyr156 by Ala or Glu, but not Val, resulted in cleavage at an upstream site in the linker segment, yielding an improperly processed inactive enzyme. Processing of the latent 65-kDa proheparanase in transfected Jar cells was inhibited by a cell-permeable inhibitor of cathepsin L. Moreover, recombinant 65-kDa proheparanase was processed and activated by cathepsin L in a cell-free system. Altogether, these results suggest that proheparanase processing at site 2 is brought about by cathepsin L-like proteases. The involvement of other members of the cathepsin family with specificity to bulky hydrophobic residues cannot be excluded. Our results and a three-dimensional model of the enzyme are expected to accelerate the design of inhibitory molecules capable of suppressing heparanase-mediated enhancement of tumor angiogenesis and metastasis.  相似文献   

20.
Three cysteine residues are located in the pro region of the transforming growth factor beta 1 (TGF-beta 1) precursor at amino acid positions 33, 223, and 225. Previous studies (Gentry, L. E., Lioubin, M. N., Purchio, A. F., and Marquardt, H. (1988) Mol. Cell. Biol. 8, 4162-4168) with purified recombinant TGF-beta 1 (rTGF-beta 1) precursor produced by Chinese hamster ovary (CHO) cells revealed that Cys-33 can form a disulfide bond with at least 1 cysteine residue in mature TGF-beta 1, contributing to the formation of a 90-110-kDa protein. We now show that Cys-223 and Cys-225 form interchain disulfide bonds. Site-directed mutagenesis was used to change these Cys codons to Ser codons, and mutant constructs were transfected into COS cells. Analysis of recombinant proteins by immunoblotting showed that by substituting Cys-33 the 90-110-kDa protein is not formed, and thus, more mature dimer (24 kDa) is obtained, corresponding to a 3- to 5-fold increase in biological activity. Substitution of Cys-223 and/or Cys-225 resulted in near wild-type levels of mature TGF-beta 1. Furthermore, cells transfected with plasmid coding for Ser at positions 223 and 225 expressed only monomeric precursor proteins and released bioactive TGF-beta 1 that did not require acid activation, suggesting that dimerization of the precursor pro region may be necessary for latency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号