首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Senescence is often described as an age‐dependent increase in natural mortality (known as actuarial senescence) and an age‐dependent decrease in fecundity (known as reproductive senescence), and its role in nature is still poorly understood. Based on empirical estimates of reproductive and actuarial senescence, we used mathematical simulations to explore how senescence affects the population dynamics of Coregonus albula, a small, schooling salmonid fish. Using an empirically based eco‐evolutionary model, we investigated how the presence or absence of senescence affects the eco‐evolutionary dynamics of a fish population during pristine, intensive harvest, and recovery phases. Our simulation results showed that the presence or absence of senescence affected how the population responded to the selection regime. At an individual level, gillnetting caused a larger decline in asymptotic length when senescence was present, compared to the nonsenescent population, and the opposite occurred when fishing was done by trawling. This change was accompanied by evolution toward younger age at maturity. At the population level, the change in biomass and number of fish in response to different fishery size‐selection patterns depended on the presence or absence of senescence. Since most life‐history and fisheries models ignore senescence, they may be over‐estimating reproductive capacity and under‐estimating natural mortality. Our results highlight the need to understand the combined effects of life‐history characters such as senescence and fisheries selection regime to ensure the successful management of our natural resources.  相似文献   

2.
Genetic methods for the estimation of population size can be powerful alternatives to conventional methods. Close‐kin mark–recapture (CKMR) is based on the principles of conventional mark–recapture, but instead of being physically marked, individuals are marked through their close kin. The aim of this study was to evaluate the potential of CKMR for the estimation of spawner abundance in Atlantic salmon and how age, sex, spatial, and temporal sampling bias may affect CKMR estimates. Spawner abundance in a wild population was estimated from genetic samples of adults returning in 2018 and of their potential offspring collected in 2019. Adult samples were obtained in two ways. First, adults were sampled and released alive in the breeding habitat during spawning surveys. Second, genetic samples were collected from out‐migrating smolts PIT‐tagged in 2017 and registered when returning as adults in 2018. CKMR estimates based on adult samples collected during spawning surveys were somewhat higher than conventional counts. Uncertainty was small (CV < 0.15), due to the detection of a high number of parent–offspring pairs. Sampling of adults was age‐ and size‐biased and correction for those biases resulted in moderate changes in the CKMR estimate. Juvenile dispersal was limited, but spatially balanced sampling of adults rendered CKMR estimates robust to spatially biased sampling of juveniles. CKMR estimates based on returning PIT‐tagged adults were approximately twice as high as estimates based on samples collected during spawning surveys. We suggest that estimates based on PIT‐tagged fish reflect the total abundance of adults entering the river, while estimates based on samples collected during spawning surveys reflect the abundance of adults present in the breeding habitat at the time of spawning. Our study showed that CKMR can be used to estimate spawner abundance in Atlantic salmon, with a moderate sampling effort, but a carefully designed sampling regime is required.  相似文献   

3.
Adverse conditions during early life can cause lasting body size deficits with effects on social and sexual competition, while an accelerated growth response can allow animals to catch up in body size but can be physiologically costly as well. How animals balance growth deficits and growth compensation is predicted to depend on the effects of each on lifetime fitness. We investigated the effects of experimental early‐life food restriction on growth, body condition, and adult contest competition in a cichlid fish (Tropheus sp.). Their longevity and aseasonal breeding suggest that, with view on lifetime reproductive success, temporarily growth‐restricted Tropheus should rather invest extra time in reaching competitive body size than risk the potential costs of accelerated growth. However, size‐selective predation pressure by gape size‐limited piscivores may have favored the evolution of an accelerated growth response to early‐life delays. Experimentally food‐restricted fish temporarily reduced their growth rate compared to a control group, but maintained their body condition factor at the control level throughout the 80‐week study period. There was no evidence for an accelerated growth response following the treatment, as the food‐restricted fish never exceeded the size‐specific growth rates that were measured in the control group. Food‐restricted fish caught up with the body size of the control group several months after the end of the treatment period and were as likely as control fish to win size‐matched contests over territories. Regardless of feeding regime, there were sex‐specific differences in growth rates and in the trajectories of condition factors over time. Females grew more slowly than males but maintained their condition factors at a high level throughout the study period, whereas the males'' condition factors declined over time. These differences may reflect sex‐specific contributions of condition and body size to adult fitness that are associated with female mouthbrooding and male competition for breeding territories.  相似文献   

4.
Coronavirus disease 2019 (COVID‐19) is especially severe in aged patients, defined as 65 years or older, for reasons that are currently unknown. To investigate the underlying basis for this vulnerability, we performed multimodal data analyses on immunity, inflammation, and COVID‐19 incidence and severity as a function of age. Our analysis leveraged age‐specific COVID‐19 mortality and laboratory testing from a large COVID‐19 registry, along with epidemiological data of ~3.4 million individuals, large‐scale deep immune cell profiling data, and single‐cell RNA‐sequencing data from aged COVID‐19 patients across diverse populations. We found that decreased lymphocyte count and elevated inflammatory markers (C‐reactive protein, D‐dimer, and neutrophil–lymphocyte ratio) are significantly associated with age‐specific COVID‐19 severities. We identified the reduced abundance of naïve CD8 T cells with decreased expression of antiviral defense genes (i.e., IFITM3 and TRIM22) in aged severe COVID‐19 patients. Older individuals with severe COVID‐19 displayed type I and II interferon deficiencies, which is correlated with SARS‐CoV‐2 viral load. Elevated expression of SARS‐CoV‐2 entry factors and reduced expression of antiviral defense genes (LY6E and IFNAR1) in the secretory cells are associated with critical COVID‐19 in aged individuals. Mechanistically, we identified strong TGF‐beta‐mediated immune–epithelial cell interactions (i.e., secretory‐non‐resident macrophages) in aged individuals with critical COVID‐19. Taken together, our findings point to immuno‐inflammatory factors that could be targeted therapeutically to reduce morbidity and mortality in aged COVID‐19 patients.  相似文献   

5.
  1. The Cormack–Jolly–Seber (CJS) model and its extensions have been widely applied to the study of animal survival rates in open populations. The model assumes that individuals within the population of interest have independent fates. It is, however, highly unlikely that a pair of animals which have formed a long‐term pairing have dissociated fates.
  2. We examine a model extension which allows animals who have formed a pair‐bond to have correlated survival and recapture fates. Using the proposed extension to generate data, we conduct a simulation study exploring the impact that correlated fate data has on inference from the CJS model. We compute Monte Carlo estimates for the bias, range, and standard errors of the parameters of the CJS model for data with varying degrees of survival correlation between mates. Furthermore, we study the likelihood ratio test of sex effects within the CJS model by simulating densities of the deviance. Finally, we estimate the variance inflation factor c^ for CJS models that incorporate sex‐specific heterogeneity.
  3. Our study shows that correlated fates between mated animals may result in underestimated standard errors for parsimonious models, significantly deflated likelihood ratio test statistics, and underestimated values of c^ for models taking sex‐specific effects into account.
  4. Underestimated standard errors can result in lowered coverage of confidence intervals. Moreover, deflated test statistics will provide overly conservative test results. Finally, underestimated variance inflation factors can lead researchers to make incorrect conclusions about the level of extra‐binomial variation present in their data.
  相似文献   

6.
  • Technical advances in 3D imaging have contributed to quantifying and understanding biological variability and complexity. However, small, dry‐sensitive objects are not easy to reconstruct using common and easily available techniques such as photogrammetry, surface scanning, or micro‐CT scanning. Here, we use cephalopod beaks as an example as their size, thickness, transparency, and dry‐sensitive nature make them particularly challenging. We developed a new, underwater, photogrammetry protocol in order to add these types of biological structures to the panel of photogrammetric possibilities.
  • We used a camera with a macrophotography mode in a waterproof housing fixed in a tank with clear water. The beak was painted and fixed on a colored rotating support. Three angles of view, two acquisitions, and around 300 pictures per specimen were taken in order to reconstruct a full 3D model. These models were compared with others obtained with micro‐CT scanning to verify their accuracy.
  • The models can be obtained quickly and cheaply compared with micro‐CT scanning and have sufficient precision for quantitative interspecific morphological analyses. Our work shows that underwater photogrammetry is a fast, noninvasive, efficient, and accurate way to reconstruct 3D models of dry‐sensitive objects while conserving their shape. While the reconstruction of the shape is accurate, some internal parts cannot be reconstructed with photogrammetry as they are not visible. In contrast, these structures are visible using reconstructions based on micro‐CT scanning. The mean difference between both methods is very small (10−5 to 10−4 mm) and is significantly lower than differences between meshes of different individuals.
  • This photogrammetry protocol is portable, easy‐to‐use, fast, and reproducible. Micro‐CT scanning, in contrast, is time‐consuming, expensive, and nonportable. This protocol can be applied to reconstruct the 3D shape of many other dry‐sensitive objects such as shells of shellfish, cartilage, plants, and other chitinous materials.
  相似文献   

7.
  1. Animal movement is a key process that connects and maintains populations on the landscape, yet for most species, we do not understand how intrinsic and extrinsic factors interact to influence individual movement behavior.
  2. Land‐use/land‐cover changes highlight that connectivity among populations will depend upon an individual''s ability to traverse habitats, which may vary as a result of habitat permeability, individual condition, or a combination of these factors.
  3. We examined the effects of intrinsic (body size) and extrinsic (habitat type) factors on desiccation tolerance, movement, and orientation in three anuran species (American toads, Anaxyrus americanus; northern leopard frogs, Lithobates pipiens; and Blanchard''s cricket frogs, Acris blanchardi) using laboratory and field studies to connect the effects of susceptibility to desiccation, size, and movement behavior in single‐habitat types and at habitat edges.
  4. Smaller anurans were more vulnerable to desiccation, particularly for species that metamorphose at relatively small sizes. Habitat type had the strongest effect on movement, while body size had more situational and species‐specific effects on movement. We found that individuals moved the farthest in habitat types that, when given the choice, they oriented away from, suggesting that these habitats are less favorable and could represent barriers to movement.
  5. Overall, our work demonstrated that differences in habitat type had strong impacts on individual movement behavior and influenced choices at habitat edges. By integrating intrinsic and extrinsic factors into our study, we provided evidence that population connectivity may be influenced not only by the habitat matrix but also by the condition of the individuals leaving the habitat patch.
  相似文献   

8.
Fecal microbial biomarkers represent a less invasive alternative for acquiring information on wildlife populations than many traditional sampling methodologies. Our goal was to evaluate linkages between fecal microbiome communities in Rocky Mountain elk (Cervus canadensis) and four host factors including sex, age, population, and physical condition (body‐fat). We paired a feature‐selection algorithm with an LDA‐classifier trained on elk differential bacterial abundance (16S‐rRNA amplicon survey) to predict host health factors from 104 elk microbiomes across four elk populations. We validated the accuracy of the various classifier predictions with leave‐one‐out cross‐validation using known measurements. We demonstrate that the elk fecal microbiome can predict the four host factors tested. Our results show that elk microbiomes respond to both the strong extrinsic factor of biogeography and simultaneously occurring, but more subtle, intrinsic forces of individual body‐fat, sex, and age‐class. Thus, we have developed and described herein a generalizable approach to disentangle microbiome responses attributed to multiple host factors of varying strength from the same bacterial sequence data set. Wildlife conservation and management presents many challenges, but we demonstrate that non‐invasive microbiome surveys from scat samples can provide alternative options for wildlife population monitoring. We believe that, with further validation, this method could be broadly applicable in other species and potentially predict other measurements. Our study can help guide the future development of microbiome‐based monitoring of wildlife populations and supports hypothetical expectations found in host‐microbiome theory.  相似文献   

9.
Population genetic structure in the marine environment can be influenced by life‐history traits such as developmental mode (biphasic, with distinct adult and larval morphology, and direct development, in which larvae resemble adults) or habitat specificity, as well as geography and selection. Developmental mode is thought to significantly influence dispersal, with direct developers expected to have much lower dispersal potential. However, this prediction can be complicated by the presence of geophysical barriers to dispersal. In this study, we use a panel of 8,020 SNPs to investigate population structure and biogeography over multiple spatial scales for a direct‐developing species, the New Zealand endemic marine isopod Isocladus armatus. Because our sampling range is intersected by two well‐known biogeographic barriers (the East Cape and the Cook Strait), our study provides an opportunity to understand how such barriers influence dispersal in direct developers. On a small spatial scale (20 km), gene flow between locations is extremely high, suggestive of an island model of migration. However, over larger spatial scales (600 km), populations exhibit a clear pattern of isolation‐by‐distance. Our results indicate that I. armatus exhibits significant migration across the hypothesized barriers and suggest that large‐scale ocean currents associated with these locations do not present a barrier to dispersal. Interestingly, we find evidence of a north‐south population genetic break occurring between Māhia and Wellington. While no known geophysical barrier is apparent in this area, it coincides with the location of a proposed border between bioregions. Analysis of loci under selection revealed that both isolation‐by‐distance and adaption may be contributing to the degree of population structure we have observed here. We conclude that developmental life history largely predicts dispersal in the intertidal isopod I. armatus. However, localized biogeographic processes can disrupt this expectation, and this may explain the potential meta‐population detected in the Auckland region.  相似文献   

10.
BackgroundAge‐related immune deficiencies are thought to be responsible for increased susceptibility to infection in older adults, with alterations in lymphocyte populations becoming more prevalent over time. The loss of humoral immunity in ageing was attributed to the diminished numbers of B cells and the reduced ability to generate immunoglobulin.AimsTo compare the intrinsic B‐cell capacity for differentiation into mature plasma cells (PCs), between young and old donors, using in vitro assays, providing either effective T‐cell help or activation via TLR engagement.MethodsB cells were isolated from healthy individuals, in younger (30–38 years) and older (60–64 years) donors. An in vitro model system of B‐cell differentiation was used, analysing 5 differentiation markers by flow cytometry, under T‐dependent (TD: CD40/BCR stimulation) or T‐independent (TI: TLR7/BCR activation) conditions. Antibody secretion was measured by ELISA and gene expression using qPCR.ResultsTI and TD differentiation resulted in effective proliferation of B cells followed by their differentiation into PC. B‐cell‐executed TI differentiation was faster, all differentiation marker and genes being expressed earlier than under TD differentiation (day 6), although generating less viable cells and lower antibody levels (day 13). Age‐related differences in B‐cell capacity for differentiation were minimal in TD differentiation. In contrast, in TI differentiation age significantly affected proliferation, viability, differentiation, antibody secretion and gene expression, older donors being more efficient.ConclusionAltogether, B‐cell differentiation into PC appeared similar between age groups when provided with T‐cell help, in contrast to TI differentiation, where multiple age‐related changes suggest better capacities in older donors. These new findings may help explain the emergence of autoantibodies in ageing.  相似文献   

11.
  1. The young leaves are the main source of nucleic acids for population genetic studies in palm‐trees; however, the access to this tissue may be limited by specific features of each species. Using root tissues as an alternative source of nucleic acids could facilitate the sampling in large populations.
  2. This study tests root tissue viability as an alternative nucleic acid source (root versus. leaf) and explores different protocols (tissue storage and DNA extraction methods) to obtain high‐quality DNA samples.
  3. The results showed no significant differences in DNA concentration (603.7 vs. 599.1 ng/μl) and quality ratios (A260/280:2.1 vs. 1.9, and A260/230:2.1 vs. 2.0) for the comparisons of tissue source (leaf vs. root) and DNA extraction method (manual vs. kit). For tissue storage method, DNA concentration was significantly higher for root tissues stored in 70% and 90% alcohol solutions (692.8 and 822.6 ng/μl, respectively) versus those obtained from leaf tissue (603.7 ng/μl); however, for the quality parameters, no differences were found.
  4. Results showed the effective potential of using root tissue as an alternative source for nucleic acids, which could facilitate population sampling of palm‐tree species for future studies, and this methodological alternative could be applied to other plant systems with similar sampling challenges.
​  相似文献   

12.
During aging, preservation of locomotion is generally considered an indicator of sustained good health, in elderlies and in animal models. In Caenorhabditis elegans, mutants of the insulin‐IGF‐1 receptor DAF2/IIRc represent a paradigm of healthy aging, as their increased lifespan is accompanied by a delay in age‐related loss of motility. Here, we investigated the DAF‐2/IIRc‐dependent relationship between longevity and motility using an auxin‐inducible degron to trigger tissue‐specific degradation of endogenous DAF‐2/IIRc. As previously reported, inactivation of DAF‐2/IIRc in neurons or intestine was sufficient to extend the lifespan of worms, whereas depletion in epidermis, germline, or muscle was not. However, neither intestinal nor neuronal depletion of DAF‐2/IIRc prevented the age‐related loss of motility. In 1‐day‐old adults, DAF‐2/IIRc depletion in neurons reduced motility in a DAF‐16/FOXO dependent manner, while muscle depletion had no effect. By contrast, DAF‐2 depletion in the muscle of middle‐age animals improved their motility independently of DAF‐16/FOXO but required UNC‐120/SRF. Yet, neuronal or muscle DAF‐2/IIRc depletion both preserved the mitochondria network in aging muscle. Overall, these results show that the motility pattern of daf‐2 mutants is determined by the sequential and opposing impact of neurons and muscle tissues and can be dissociated from the regulation of the lifespan. This work also provides the characterization of a versatile tool to analyze the tissue‐specific contribution of insulin‐like signaling in integrated phenotypes at the whole organism level.  相似文献   

13.
  1. Forest canopies play a crucial role in structuring communities of vascular epiphytes by providing substrate for colonization, by locally varying microclimate, and by causing epiphyte mortality due to branch or tree fall. However, as field studies in the three‐dimensional habitat of epiphytes are generally challenging, our understanding of how forest structure and dynamics influence the structure and dynamics of epiphyte communities is scarce.
  2. Mechanistic models can improve our understanding of epiphyte community dynamics. We present such a model that couples dispersal, growth, and mortality of individual epiphytes with substrate dynamics, obtained from a three‐dimensional functional–structural forest model, allowing the study of forest–epiphyte interactions. After validating the epiphyte model with independent field data, we performed several theoretical simulation experiments to assess how (a) differences in natural forest dynamics, (b) selective logging, and (c) forest fragmentation could influence the long‐term dynamics of epiphyte communities.
  3. The proportion of arboreal substrate occupied by epiphytes (i.e., saturation level) was tightly linked with forest dynamics and increased with decreasing forest turnover rates. While species richness was, in general, negatively correlated with forest turnover rates, low species numbers in forests with very‐low‐turnover rates were due to competitive exclusion when epiphyte communities became saturated. Logging had a negative impact on epiphyte communities, potentially leading to a near‐complete extirpation of epiphytes when the simulated target diameters fell below a threshold. Fragment size had no effect on epiphyte abundance and saturation level but correlated positively with species numbers.
  4. Synthesis: The presented model is a first step toward studying the dynamic forest–epiphyte interactions in an agent‐based modeling framework. Our study suggests forest dynamics as key factor in controlling epiphyte communities. Thus, both natural and human‐induced changes in forest dynamics, for example, increased mortality rates or the loss of large trees, pose challenges for epiphyte conservation.
  相似文献   

14.
Human enterprise has led to large‐scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage‐grouse (Centrocercus urophasianus; hereafter sage‐grouse) are a widespread sagebrush (Artemisia spp.) obligate species that has experienced population declines since the mid‐1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage‐grouse’ distribution, where a remnant population remains despite recent development of energy‐related infrastructure. Resource managers in this region have determined a need to augment sage‐grouse populations using translocation techniques that can be important management tools for countering species decline from range contraction. Although translocations are a common tool for wildlife management, very little research has evaluated habitat following translocation, to track individual behaviors such as habitat selection and fidelity to the release site, which can help inform habitat requirements to guide selection of future release sites. We provide an example where locations from previously released radio‐marked sage‐grouse are used in a resource selection function framework to evaluate habitat selection following translocation and identify areas of seasonal habitat to inform habitat management and potential restoration needs. We also evaluated possible changes in seasonal habitat since the late 1980s using spatial data provided by the Rangeland Analysis Platform coupled with resource selection modeling results. Our results serve as critical baseline information for habitat used by translocated individuals across life stages in this study area, and will inform future evaluations of population performance and potential for long‐term recovery.  相似文献   

15.
Pseudotaxus chienii, belonging to the monotypic genus Pseudotaxus (Taxaceae), is a relict conifer endemic to China. Its populations are usually small and patchily distributed, having a low capacity of natural regeneration. To gain a clearer understanding of how landscape variables affect the local adaptation of P. chienii, we applied EST‐SSR markers in conjunction with landscape genetics methods: (a) to examine the population genetic pattern and spatial genetic structure; (b) to perform genome scan and selection scan to identify outlier loci and the associated landscape variables; and (c) to model the ecological niche under climate change. As a result, P. chienii was found to have a moderate level of genetic variation and a high level of genetic differentiation. Its populations displayed a significant positive relationship between the genetic and geographical distance (i.e., “isolation by distance” pattern) and a strong fine‐scale spatial genetic structure within 2 km. A putatively adaptive locus EMS6 (functionally annotated to cellulose synthase A catalytic subunit 7) was identified, which was found significantly associated with soil Cu, K, and Pb content and the combined effects of temperature and precipitation. Moreover, P. chienii was predicted to experience significant range contractions in future climate change scenarios. Our results highlight the potential of specific soil metal content and climate variables as the driving force of adaptive genetic differentiation in P. chienii. The data would also be useful to develop a conservation action plan for P. chienii.  相似文献   

16.
Aging‐associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world''s population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging‐associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin‐37 (IL‐37) is a potent anti‐inflammatory cytokine, and we present data demonstrating that IL‐37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin‐37 (IL‐37) in aged mice reduces or prevents aging‐associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL‐37 expression decreases the surface expression of programmed cell death protein 1 (PD‐1) and augments cytokine production from aged T‐cells. Improved T‐cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T‐cells and Lat in CD8+ T‐cells when aged mice were treated with recombinant IL‐37 (rIL‐37) but not control immunoglobin (Control Ig). Importantly, IL‐37‐mediated rejuvenation of aged endogenous T‐cells was also observed in aged chimeric antigen receptor (CAR) T‐cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL‐37 in boosting the function of aged T‐cells and highlight its therapeutic potential to overcome aging‐associated immunosenescence.  相似文献   

17.
We studied life‐history traits focusing on the growth and condition of the pikeperch Sander lucioperca to evaluate its phenotypic plasticity when introduced to new environments. Pikeperch is a non‐native fish introduced to Iberian freshwater fauna in 1998 that quickly spread to other river basins through human‐mediated activities, occupying now a wide variety of habitats along mainland Portugal. Condition (K and SMI), fork length at age, and length–weight relationships were studied for Portuguese populations. Pikeperch fork length for ages 1, 2, 3, and 4 was different between several populations. We applied generalized linear models (GLM) to study the influence of habitat type, latitude, altitude, time after first detection, and fish prey richness on pikeperch populations size at age 4 and condition. We observed higher condition values on populations from lower altitudes at lentic systems more recently introduced. But higher fork length at age 4 was found in populations from higher altitudes, on older populations with higher prey richness. Habitat type, time since first detection, and fish fauna composition are discussed as the main environmental factors explaining the observed phenotypic plasticity with concerns on predatory impact on native fauna.  相似文献   

18.
  1. Predicting the likelihood of wildlife presence at potential wildlife–livestock interfaces is challenging. These interfaces are usually relatively small geographical areas where landscapes show large variation over small distances. Models of wildlife distribution based on coarse data over wide geographical ranges may not be representative of these interfaces. High‐resolution data can help identify fine‐scale predictors of wildlife habitat use at a local scale and provide more accurate predictions of species habitat use. These data may be used to inform knowledge of interface risks, such as disease transmission between wildlife and livestock, or human–wildlife conflict.
  2. This study uses fine‐scale habitat use data from wild boar (Sus scrofa) based on activity signs and direct field observations in and around the Forest of Dean in Gloucestershire, England. Spatial logistic regression models fitted using a variant of penalized quasi‐likelihood were used to identify habitat‐based and anthropogenic predictors of wild boar signs.
  3. Our models showed that within the Forest of Dean, wild boar signs were more likely to be seen in spring, in forest‐type habitats, closer to the center of the forest and near litter bins. In the area surrounding the Forest of Dean, wild boar signs were more likely to be seen in forest‐type habitats and near recreational parks and less likely to be seen near livestock.
  4. This approach shows that wild boar habitat use can be predicted using fine‐scale data over comparatively small areas and in human‐dominated landscapes, while taking account of the spatial correlation from other nearby fine‐scale data‐points. The methods we use could be applied to map habitat use of other wildlife species in similar landscapes, or of movement‐restricted, isolated, or fragmented wildlife populations.
  相似文献   

19.
PD‐1 is a highly glycosylated inhibitory receptor expressed mainly on T cells. Targeting of PD‐1 with monoclonal antibodies (MAbs) to block the interaction with its ligand PD‐L1 has been successful for the treatment of multiple tumors. However, polymorphisms at N‐glycosylation sites of PD‐1 exist in the human population that might affect antibody binding, and dysregulated glycosylation has been observed in the tumor microenvironment. Here, we demonstrate varied N‐glycan composition in PD‐1, and show that the binding affinity of camrelizumab, a recently approved PD‐1‐specific MAb, to non‐glycosylated PD‐1 proteins from E. coli is substantially decreased compared with glycosylated PD‐1. The structure of the camrelizumab/PD‐1 complex reveals that camrelizumab mainly utilizes its heavy chain to bind to PD‐1, while the light chain sterically inhibits the binding of PD‐L1 to PD‐1. Glycosylation of asparagine 58 (N58) promotes the interaction with camrelizumab, while the efficiency of camrelizumab to inhibit the binding of PD‐L1 is substantially reduced for glycosylation‐deficient PD‐1. These results increase our understanding of how glycosylation affects the activity of PD‐1‐specific MAbs during immune checkpoint therapy.  相似文献   

20.
  1. Fishing is a strong selective force and is supposed to select for earlier maturation at smaller body size. However, the extent to which fishing‐induced evolution is shaping ecosystems remains debated. This is in part because it is challenging to disentangle fishing from other selective forces (e.g., size‐structured predation and cannibalism) in complex ecosystems undergoing rapid change.
  2. Changes in maturation size from fishing and predation have previously been explored with multi‐species physiologically structured models but assumed separation of ecological and evolutionary timescales. To assess the eco‐evolutionary impact of fishing and predation at the same timescale, we developed a stochastic physiologically size‐structured food‐web model, where new phenotypes are introduced randomly through time enabling dynamic simulation of species'' relative maturation sizes under different types of selection pressures.
  3. Using the model, we carried out a fully factorial in silico experiment to assess how maturation size would change in the absence and presence of both fishing and predation (including cannibalism). We carried out ten replicate stochastic simulations exposed to all combinations of fishing and predation in a model community of nine interacting fish species ranging in their maximum sizes from 10 g to 100 kg. We visualized and statistically analyzed the results using linear models.
  4. The effects of fishing on maturation size depended on whether or not predation was enabled and differed substantially across species. Fishing consistently reduced the maturation sizes of two largest species whether or not predation was enabled and this decrease was seen even at low fishing intensities (F = 0.2 per year). In contrast, the maturation sizes of the three smallest species evolved to become smaller through time but this happened regardless of the levels of predation or fishing. For the four medium‐size species, the effect of fishing was highly variable with more species showing significant and larger fishing effects in the presence of predation.
  5. Ultimately our results suggest that the interactive effects of predation and fishing can have marked effects on species'' maturation sizes, but that, at least for the largest species, predation does not counterbalance the evolutionary effect of fishing. Our model also produced relative maturation sizes that are broadly consistent with empirical estimates for many fish species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号