首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
Selenium (Se) is an essential micronutrient for humans, acting as a component of the unusual amino acids, selenocysteine (Se-Cys) and selenomethionine (Se-Met). Where Se levels are low, the cell cannot synthesise selenoproteins, although some selenoproteins and some tissues are prioritised over others. Characterised functions of known selenoproteins, include selenium transport (selenoprotein P), antioxidant/redox properties (glutathione peroxidases (GPxs), thioredoxin reductases and selenoprotein P) and anti-inflammatory properties (selenoprotein S and GPx4). Various forms of Se are consumed as part of a normal diet, or as a dietary supplement. Supplementation of tissue culture media, animal or human diets with moderate levels of certain Se compounds may protect against the formation of DNA adducts, DNA or chromosome breakage, and chromosome gain or loss. Protective effects have also been shown on mitochondrial DNA, and on telomere length and function. Some of the effects of Se compounds on gene expression may relate to modulation of DNA methylation or inhibition of histone deacetylation. Despite a large number of positive effects of selenium and selenoproteins in various model systems, there have now been some human clinical trials that have shown adverse effects of Se supplementation, according to various endpoints. Too much Se is as harmful as too little, with animal models showing a "U"-shaped efficacy curve. Current recommended daily allowances differ among countries, but are generally based on the amount of Se necessary to saturate GPx enzymes. However, increasing evidence suggests that other enzymes may be more important than GPx for Se action, that optimal levels may depend upon the form of Se being ingested, and vary according to genotype. New paradigms, possibly involving nutrigenomic tools, will be necessary to optimise the forms and levels of Se desirable for maximum protection of genomic stability in all humans.  相似文献   

5.
A suboptimal selenium supply appears to prevail in Europe. The current study, therefore, was focused on the changes in gene expression under a suboptimal selenium intake. Previous microarray analyses in the colon of mice fed either a selenium-adequate or a moderately deficient diet revealed a change in genes of several pathways. Severe selenium-deficiency has been found previously to influence Nrf2-regulated genes of the adaptive response. Since the previous pathway analyses were done with a program not searching for Nrf2 target genes, respective genes were manually selected and confirmed by qPCR. qPCR revealed an induction of phase II (Nqo1, Gsts, Sult1b1 and Ugt1a6) and antioxidant enzymes (Hmox1, Mt2, Prdx1, Srxn1, Sod1 and Gclc) under the selenium-poor diet, which is considered to compensate for the loss of selenoproteins. The strongest effects were observed in the duodenum where preferentially genes for antioxidant enzymes were up-regulated. These also include the mRNA of the selenoproteins TrxR1 and GPx2 that would enable their immediate translation upon selenium refeeding. The down-regulation of Gsk3β in moderate selenium-deficiency observed in the previous paper provides a possible explanation for the activation of the Nrf2 pathway, because inhibition of GSK3β results in the nuclear accumulation of Nrf2.  相似文献   

6.
Selenoproteins and selenium status in bone physiology and pathology   总被引:1,自引:0,他引:1  

Background

Emerging evidence supports the view that selenoproteins are essential for maintaining bone health.

Scope of review

The current state of knowledge concerning selenoproteins and Se status in bone physiology and pathology is summarized.

Major conclusions

Antioxidant selenoproteins including glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), as a whole, play a pivotal role in maintaining bone homeostasis and protecting against bone loss. GPx1, a major antioxidant enzyme in osteoclasts, is up-regulated by estrogen, an endogenous inhibitor of osteoclastogenesis. TrxR1 is an immediate early gene in response to 1α,25-dihydroxyvitamin D3, an osteoblastic differentiation agent. The combination of 1α,25-dihydroxyvitamin D3 and Se generates a synergistic elevation of TrxR activity in Se-deficient osteoblasts. Of particular concern, pleiotropic TrxR1 is implicated in promoting NFκB activation. Coincidentally, TrxR inhibitors such as curcumin and gold compounds exhibit potent osteoclastogenesis inhibitory activity. Studies in patients with the mutations of selenocysteine insertion sequence-binding protein 2, a key trans-acting factor for the co-translational insertion of selenocysteine into selenoproteins have clearly established a causal link of selenoproteins in bone development. Se transport to bone relies on selenoprotein P. Plasma selenoprotein P concentrations have been found to be positively correlated with bone mineral density in elderly women.

General significance

A full understanding of the role and function of selenoproteins and Se status on bone physiology and pathology may lead to effectively prevent against or modify bone diseases by using Se.  相似文献   

7.
8.
Mercury compounds exert toxic effects via interaction with many vital enzymes involved in antioxidant regulation, such as selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Selenium supplementation can reactivate the mercury-inhibited TrxR and recover the cell viability in vitro. To gain an insight on how selenium supplementation affects mercury toxicity in vertebrates, we investigated the effects of selenium on the mercury accumulation and TrxR and GPx activities in a fish model. Juvenile zebra-seabreams were exposed either to methylmercury (MeHg) or inorganic mercury (Hg(2+)) in the presence or absence of sodium selenite (Se) for 28 days followed by 14 days of depuration. Mercury accumulation was found to be 10-fold higher under MeHg exposure than under Hg(2+) exposure. Selenium supplementation caused a half decrease of the accumulation of MeHg but did not influence Hg(2+) accumulation. Exposure to both mercurials led to a decrease of the activity of TrxR (<50% of control) in all organs. Se supplementation coincident with Hg(2+) exposure protected the thioredoxin system in fish liver. However, supplementation of Se during the depuration phase had no effects. The activity of GPx was only affected in the brain of fishes upon the exposure to MeHg and coexposure to MeHg and Se. Selenium supplementation has a limited capacity to prevent mercury effects in brain and kidney. These results demonstrate that Se supplementation plays a protective role in a tissue-specific manner and also highlight the importance of TrxR as a main target for mercurials in vivo.  相似文献   

9.
Sodium selenosulfate has been extensively used as a precursor of selenide ions in the preparation of nano Se-containing compounds. Its biological properties remain completely unknown. Sodium selenosulfate and sodium selenite were added to the medium of HepG2 cells and administered intraperitoneally at a dose of 0.1 mg Se/kg body weight to selenium-deficient mice, respectively. Both of the selenium compounds could increase the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) in a dose-dependent manner in cells and efficiently restore selenium retention and activities of GPx and TrxR in mice. All of the variables were in correlation with the Se supply. There was no distinction in elevating activities of GPx and TrxR between selenosulfate and selenite in vitro. After a 2-d supply of selenosulfate, the activity of GPx in the liver was 65% (p < 0.001) and Se accumulations in the liver, kidney and blood were 64%, 86%, and 65%, respectively, of those treated with selenite (allp < 0.01). With the 7-d selenosulfate supplementation, the activity of GPx in the kidney and activities of TrxR in the liver and kidney were 88%, 75%, and 78%, respectively, of those treated with selenite (allp < 0.01); Se retentions in the liver and kidney were 85% and 93%, respectively of those supplemented with selenite (bothp < 0.01). These facts indicated that selenosulfate could be absorbed and utilized in the biological system. No difference in vitro demonstrated that selenosulfate could be absorbed and generate reduced selenide as efficiently as selenite. The differences between the two compounds in vivo were the result of other factors that affected selenosulfate utilization in tissues.  相似文献   

10.
Adequate supply of selenium (Se) is critical for synthesis of selenoproteins through selenocysteine insertion mechanism. To explore this process we investigated the expression of the cytosolic and mitochondrial isoenzymes of thioredoxin reductase (TrxR1 and TrxR2) in response to altered Se supply. Rats were fed diets containing different quantities of selenium and the levels of TrxR1 and TrxR2 protein and their corresponding mRNAs were determined in liver and kidney. Expression of the two isoenzymes was differentially affected, with TrxR1 being more sensitive to Se depletion than TrxR2 and greater changes in liver than kidney. In order to determine if the selenocysteine incorporation sequence (SECIS) element was critical in this response liver and kidney cell lines (H4 and NRK-52E) were transfected with reporter constructs in which expression of luciferase required read-through at a UGA codon and which contained either the TrxR1 or TrxR2 3'UTR, or a combination of the TrxR1 5' and 3'UTRs. Cell lines expressing constructs with the TrxR1 3'UTR demonstrated no response to restricted Se supply. In comparison the Se-deficient cells expressing constructs with the TrxR2 3'UTR showed considerably less luciferase activity than the Se-adequate cells. No disparity of response to Se supply was observed in the constructs containing the different TrxR1 5'UTR variants. The data show that there is a prioritisation of TrxR2 over TrxR1 during Se deficiency such that TrxR1 expression is more sensitive to Se supply than TrxR2 but this sensitivity of TrxR1 was not fully accounted for by TrxR1 5' or 3'UTR sequences when assessed using luciferase reporter constructs.  相似文献   

11.
Reactive oxygen species (ROS) are derived from cellular oxygen metabolism and from exogenous sources. An excess of ROS results in oxidative stress and may eventually cause cell death. ROS levels within cells and in extracellular body fluids are controlled by concerted action of enzymatic and non-enzymatic antioxidants. The essential trace element selenium exerts its antioxidant function mainly in the form of selenocysteine residues as an integral constituent of ROS-detoxifying selenoenzymes such as glutathione peroxidases (GPx), thioredoxin reductases (TrxR) and possibly selenoprotein P (SeP). In particular, the dual role of selenoprotein P as selenium transporter and antioxidant enzyme is highlighted herein. A cytoprotective effect of selenium supplementation has been demonstrated for various cell types including neurons and astrocytes as well as endothelial cells. Maintenance of full GPx and TrxR activity by adequate dietary selenium supply has been proposed to be useful for the prevention of several cardiovascular and neurological disorders. On the other hand, selenium supplementation at supranutritional levels has been utilised for cancer prevention: antioxidant selenoenzymes as well as prooxidant effects of selenocompounds on tumor cells are thought to be involved in the anti-carcinogenic action of selenium.  相似文献   

12.
The mammalian thioredoxin reductases (TrxR) are selenoproteins containing a catalytically active selenocysteine residue (Sec) and are important enzymes in cellular redox control. The cotranslational incorporation of Sec, necessary for activity, is governed by a stem-loop structure in the 3'-untranslated region of the mRNA and demands adequate selenium availability. The complicated translation machinery required for Sec incorporation is a major obstacle in isolating mammalian cell lines stably overexpressing selenoproteins. In this work we report on the development and characterization of stably transfected human embryonic kidney 293 cells that overexpress enzymatically active selenocysteine-containing cytosolic TrxR1 or mitochondrial TrxR2. We demonstrate that the overexpression of selenium-containing TrxR1 results in lower expression and activity of the endogenous selenoprotein glutathione peroxidase and that the activity of overexpressed TrxRs, rather than the protein amount, can be increased by selenium supplementation in the cell growth media. We also found that the TrxR-overexpressing cells grew slower over a wide range of selenium concentrations, which was an effect apparently not related to increased apoptosis nor to fatally altered intracellular levels of reactive oxygen species. Most surprisingly, the TrxR1- or TrxR2-overexpressing cells also induced novel expression of the epithelial markers CK18, CK-Cam5.2, and BerEP4, suggestive of a stimulation of cellular differentiation.  相似文献   

13.
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that have promoting activity in the liver. PCBs induce oxidative stress, which may influence carcinogenesis. Epidemiological studies strongly suggest an inverse relationship between dietary selenium (Se) and cancer. Despite evidence linking Se deficiency to hepatocellular carcinoma and liver necrosis, the underlying mechanisms for Se cancer protection in the liver remain to be determined. We examined the effect of dietary Se on the tumor promoting activities of two PCBs congeners, 3,3', 4,4'-tetrachlorobiphenyl (PCB-77) and 2,2', 4,4', 5,5'-hexachlorobiphenyl (PCB-153) using a 2-stage carcinogenesis model. An AIN-93 torula yeast-based purified diet containing 0.02 (deficient), 0.2 (adequate), or 2.0 mg (supplemental) selenium/kg diet was fed to Sprague-Dawley female rats starting ten days after administering a single dose of diethylnitrosamine (150 mg/kg). After being fed the selenium diets for 3 weeks, rats received four i.p. injections of either PCB-77 or PCB-153 (150 micromol/kg) administered every 14 days. The number of placental glutathione S-transferase (PGST)-positive foci per cm(3) and per liver among the PCB-77-treated rats was increased as the Se dietary level increased. Unlike PCB-77, rats receiving PCB-153 did not show the same Se dose-response effect; nevertheless, Se supplementation did not confer protection against foci development. However, the 2.0 ppm Se diet reduced the mean focal volume, indicating a possible protective effect by inhibiting progression of preneoplastic lesions into larger foci. Cell proliferation was not inhibited by Se in the liver of the PCB-treated groups. Se did not prevent the PCB-77-induced decrease of hepatic Se and associated reduction in glutathione peroxidase (GPx) activity. In contrast, thioredoxin reductase (TrxR) activity was not affected by the PCBs treatment or by Se supplementation. These findings indicate that Se does not inhibit the number of PGST-positive foci induced during promotion by PCBs, but that the size of the lesions may be inhibited. The effects of Se on altered hepatic foci do not correlate with its effects on GPx and TrxR.  相似文献   

14.
15.
The impact of selenium (Se) in carcinogenesis is still debatable due to inconsistent results of observational studies, recent suspicion of diabetic side effects and e.g. dual roles of glutathione peroxidases (GPx). Previously, our group introduced long-term studies on lung carcinogenesis using the jaagtsiekte sheep retrovirus (JSRV) induced ovine pulmonary adenocarcinoma (OPA) as an innovative animal model. The present report describes the results of sufficient (0.2 mg Se/kg dry weight (dw)) vs. marginal (<0.05 mg Se/kg dw) nutritional Se supply on cancer progression over a two-year period in 16 animals. Computed tomography (CT) evaluation of lung cancer progression, final pathological examination, evidence of pro-viral JSRV-DNA in lung, lymph nodes and broncho-alveolar lavage cells as well as biochemical analysis of Se, GPx1 and thioredoxin reductase (TrxR) activity in lung tissue were recorded. Additionally, immunohistochemical determination of GPx1 expression in unaffected and neoplastic lung cells was implemented.The feeding regime caused significant differences in Se concentration and GPx1 activity in lung tissue between groups, whereas TrxR activity remained unaffected. JSRV was evident in broncho-alveolar lavage cells, lung tissue and lung lymph nodes. Quarterly executed CT could not demonstrate differences in lung cancer proliferation intensity. Necropsy and histopathology substantiated CT findings. Immunohistochemical analysis of GPx1 in lung tissue suggested a coherency of GPx1 immunolabelling intensity in dependence of tumour size.It was concluded that the model proved to be suitable for long-term studies of lung cancer proliferation including the impact of modifiable nutritional factors. Proliferation of OPA was unaffected by marginal vs. sufficient nutritional Se supply.  相似文献   

16.
The mammalian thioredoxin reductases (TrxR) are selenoproteins with a catalytic selenocysteine residue which in the oxidized enzyme forms a selenenylsulfide and in the reduced enzyme is present as a selenolthiol. Selenium compounds such as selenite, selenodiglutathione and selenocystine are substrates for the enzyme with low Km-values and the enzyme is implicated in reductive assimilation of selenium by generating selenide for selenoprotein synthesis. Redox cycling of reduced metabolites of these selenium compounds including selenide with oxygen via TrxR and reduced thioredoxin (Trx) will oxidize NADPH and produce reactive oxygen species inducing cell death at high concentrations explaining selenite toxicity. There is no free pool of selenocysteine since this would be toxic in an oxygen environment by redox cycling via thioredoxin systems. The importance of selenium compounds and TrxR in cancer and cardiovascular diseases both for prevention and treatment is discussed. A selenazol drug like ebselen is a direct substrate for mammalian TrxR and dithiol Trx and ebselen selenol is readily reoxidized by hydrogen peroxide and lipid hydroperoxides, acting as an anti-oxidant and anti-inflammatory drug.  相似文献   

17.
18.
Intracellular Ca2+ signaling controls many cellular functions. Understanding its regulation by selenoproteins is essential for understanding the role of selenoproteins in regulating cell functions. The activity of thioredoxin reductase (TrxR), thioredoxin (Trx) content, and the activity of glutathione peroxidase (GPx) in the human endothelial cells cultured in selenium-supplemented medium (refer as Se+ cells) was found 70%, 40%, and 20% higher, respectively than those in the cells cultured in normal medium (refer as Se0 cells). The intracellular Ca2+ signaling initiated by inositol 1,4,5-trisphosphate (IP3), histamine, thapsigargin (TG), carbonyl cyanide p-(tri-fluoromethoxy) phenyl-hydrazone (FCCP), and cyclosporin A (CsA) was investigated in both Se+ and Se0 cells. It was interestingly found that the higher activity of selenoproteins reduced the sensitivity of IP3 receptor to the IP3-triggered Ca2+ release from intracellular stores, but enhanced activation of the receptor-coupled phospholipase C in histamine-stimulated Se+ cells by showing much more generation of IP3 and higher elevation of cytosolic Ca2+. The higher selenoprotein activity also reduced susceptibility of the uniporter to the mitochondrial uncoupler, susceptibility of the permeability transition pore (PTP) to its inhibitor, and the vulnerability of endoplasmic reticulum (ER) Ca2+-ATPase to its inhibitor in selenium-supplementing cells. The results suggest that cell calcium signaling is subjected to thiol-redox regulation by selenoproteins.  相似文献   

19.
The selenoprotein glutathione peroxidase-2 (GPx2) appears to have a dual role in carcinogenesis. While it protected mice from colon cancer in a model of inflammation-triggered carcinogenesis (azoxymethane and dextran sodium sulfate treatment), it promoted growth of xenografted tumor cells. Therefore, we analyzed the effect of GPx2 in a mouse model mimicking sporadic colorectal cancer (azoxymethane-treatment only). GPx2-knockout (KO) and wild-type (WT) mice were adjusted to an either marginally deficient (−Se), adequate (+Se), or supranutritional (++Se) selenium status and were treated six times with azoxymethane (AOM) to induce tumor development. In the −Se and ++Se groups, the number of tumors was significantly lower in GPx2-KO than in respective WT mice. On the +Se diet, the number of dysplastic crypts was reduced in GPx2-KO mice. This may be explained by more basal and AOM-induced apoptotic cell death in GPx2-KO mice that eliminates damaged or pre-malignant epithelial cells. In WT dysplastic crypts GPx2 was up-regulated in comparison to normal crypts which might be an attempt to suppress apoptosis. In contrast, in the +Se groups tumor numbers were similar in both genotypes but tumor size was larger in GPx2-KO mice. The latter was associated with an inflammatory and tumor-promoting environment as obvious from infiltrated inflammatory cells in the intestinal mucosa of GPx2-KO mice even without any treatment and characterized as low-grade inflammation. In WT mice the number of tumors tended to be lowest in +Se compared to −Se and ++Se feeding indicating that selenium might delay tumorigenesis only in the adequate status. In conclusion, the role of GPx2 and presumably also of selenium depends on the cancer stage and obviously on the involvement of inflammation.  相似文献   

20.
This study describes the effects of selenium (Se) deficiency on the messenger ribonucleic acid (mRNA) expression of 25 selenoproteins (Sels) (including glutathione peroxidases (GPx1–GPx4), thioredoxin reductases (TrxR1–TrxR3), iodothyronine deiodinases (ID1–ID3), selenophosphate synthetase 2 (SPS2), 15-kDa Sel (Sel15), SelH, SelI, SelK, SelM, Sepn1, SelO, Sepx, Selpb, SelS, SelT, SelW, Sepp1, and SelU in the adipose tissues (subcutaneous adipose, visceral adipose, and articular adipose) of chickens. One hundred and fifty 1-day-old chickens were randomly assigned to two groups of 75 each and were fed a low-Se diet (0.032 mg/kg Se) or a control diet (0.282 mg/kg Se). The expression levels of 25 Sel mRNAs were determined on days 35, 45, and 55 from three parts (subcutaneous adipose, visceral adipose, and articular adipose) of the chicken adipose tissues. The results showed that the expression levels of the 25 Sel mRNAs were significantly lower (P?<?0.05) in the low-selenium group than in the control group. In addition, the Sel mRNA expression levels in the three adipose tissues were observed to decrease in a time-dependent manner with increasing feeding time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号