首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conflicting evidence has been reported regarding the role of endothelin-1, a potent vasconstrictor peptide, in stimulating extracellular calcium influx in rabbit vascular smooth muscle. The objective of this study was to elucidate the effects of endothelin-1 on transmembrane 45Ca2+ influx and intracellular calcium mobilization in cultured rabbit aortic smooth muscle cells. In calcium containing buffer, endothelin-1 induced a concentration-dependent 45Ca2+ efflux response over the range of 10 pM to 100 nM with an EC50 of approximately 60 pM. Maximum endothelin-stimulated 45Ca2+ efflux was not affected by the absence of extracellular calcium or the presence of 1 microM verapamil. Endothelin-1 did not induce transplasmalemmal 45Ca2+ uptake at times up to 30 min. These findings suggest that an alteration in intracellular calcium handling, rather than extracellular calcium influx, is responsible for the endothelin-stimulated increase in intracellular calcium concentration in rabbit aortic smooth muscle cells.  相似文献   

2.
Techniques to dissociate different sites or stores important for Ca2+ entry or release in smooth muscle include washouts of 45Ca in cold La3+ -substituted solutions. Scatchard-coordinate plots of Ca2+ uptake, substitution of Sr2+ for Ca2+, and both desaturation and rate coefficient plots. Rabbit aortic smooth muscle is particularly useful because Ca2+ mobilization components can be clearly separated. Other vascular preparations investigated (e.g., renal vessels, coronary arteries) appear to have similar components, but their relative importance varies. Respiratory smooth muscle also has similar Ca2+ mobilization components, but they are less readily dissociated by techniques employed in vascular smooth muscles. In guinea pig trachea, cold La3+ washouts do not retain cellular Ca2+ as well as in other preparations: use of other experimental approaches including the Ca2+ channel entry stimulator, CGP 28392, can demonstrate different Ca2+ uptake mechanisms for K+ -stimulated and agonist-induced Ca2+ uptake. In rabbit aorta, CGP 28392 potentiates tension increases elicited with lower concentrations of added K+ but has no effect on norepinephrine-induced contraction. A general model illustrating different Ca2+ entry mechanisms present in three types of smooth muscle provides examples drawn from a spectrum of possible variations in smooth muscle specificity for Ca2+ mobilization.  相似文献   

3.
4.
5.
Cultured endothelial cells release a potent vasoconstrictor peptide, endothelin. Cumulative addition of synthetic endothelin to isolated rabbit aortic rings elicited a concentration-dependent increase in contractile tension which was endothelium-independent. In cultured rabbit vascular smooth muscle cells loaded with the fluorescent dye fura 2, endothelin induced a concentration-dependent increase in [Ca2+]i over the range of 0.01 to 100 nM. Moreover, in the absence of extracellular Ca2+, endothelin could still induce an increase in [Ca2+]i. In addition, endothelin stimulated 45Ca2+ efflux from preloaded vascular smooth muscle cells in the presence and absence of extracellular Ca2+, as well as stimulating 45Ca2+ influx in a concentration-dependent manner. Measurement of inositol phosphates in [3H]-myoinositol-labelled vascular vascular trisphosphate. Unlabelled endothelin inhibited (125I)-endothelin binding to cultured rabbit vascular smooth muscle cells in a concentration-dependent manner. Binding was not inhibited by other vasoactive hormones or calcium channel ligands, suggesting cell surface receptors specific for endothelin. We conclude that one of the initial membrane events in the action of endothelin is to induce phospholipase C-stimulated PIP2 hydrolysis and that this signalling mechanism is initiated by endothelin/receptor interaction at the plasma membrane.  相似文献   

6.
The in vitro effects of endothelin-1 (ET-1) and endothelin-3 (ET-3) on the release of prostaglandin (PG)E2 from the rat median eminence were investigated. The addition of ET-1 from 10(-9) M to 10(-6) M stimulated PGE2 release in a dose-dependent manner (from 10.5 +/- 2.1 to 54.4 +/- 5.6 pg/ME fragment/30 min; mean +/- SEM, p less than 0.001). ET-3 also stimulated the release of PGE2 from 10(-7) M to 10(-5) M dose dependently (from 18.1 +/- 0.7 to 60.9 +/- 17.4 pg/ME fragment/30 min p less than 0.05). The time course effect of ET-3 (10(-6) M) showed that PGE2 release was stimulated within five minutes (control, 1.5 +/- 0.5; ET-3, 15.8 +/- 3.0 pg/ME fragment/5 min, p less than 0.01). These results suggest that ET-1 and ET-3 have some physiological effects on the rat median eminence.  相似文献   

7.
The effect of the specific potassium (K+) ionophore valinomycin on increase in intracellular calcium concentration [( Ca2+]i) was studied in vascular smooth muscle cells (VSMC). Valinomycin at more than 10(-9) M dose-dependently suppressed phasic increase in [Ca2+]i in VSMC induced by angiotensin II (AII) in both control and Ca2+-free solution, indicating that it suppressed the release of Ca2+ from intracellular Ca2+ stores. Nicorandil and cromakalim, which are both K+ channel openers, also suppressed the increases in [Ca2+]i induced by AII in the Ca2+ free solution. However, valinomycin did not suppress AII-induced production of inositol 1,4,5-trisphosphate (IP3), which is known to mediate the release of Ca2+. These results indicate that decrease of intracellular K+ induced by valinomycin suppressed the release of Ca2+ from intracellular Ca2+ stores induced by IP3.  相似文献   

8.
Recent studies have shown that CD36 plays important roles as a major scavenger receptor for oxidized low-density lipoproteins and as a crucial transporter for long-chain fatty acids. CD36 deficiency might be associated with insulin resistance and abnormal dynamics of long-chain fatty acids. Endothelin-1 (ET-1), which is synthesized and secreted by vascular endothelial cells, is the most potent endogenous vasoconstrictor known and also stimulates the proliferation of vascular smooth muscle cells (VSMCs) and thus is believed to play an important role in the development of various circulatory disorders, including hypertension and atherosclerosis. The aim of the present study was to investigate the regulatory effect of ET-1 on CD36 expression in cultured VSMCs. VSMCs were treated for different times (0-24 h) with a fixed concentration (100 nM) of ET-1 or with different concentrations (0-100 nM) for a fixed time (24 h); then CD36 expression was determined using Western blots. CD36 expression was significantly decreased by ET in a time- and dose-dependent manner. This inhibitory effect was prevented by the ET(A) receptor antagonist BQ-610 (10 microM) but not the ET(B) receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the tyrosine kinase-mediated and MAPK-mediated pathways. The inhibitory effect of ET-1 on CD36 protein expression was blocked by inhibition of tyrosine kinase activation by use of genistein (100 microM) and by the ERK inhibitor PD-98059 (75 microM) but not by the p38 MAPK inhibitor SB-203580 (20 microM). In conclusion, we have demonstrated that ET-1, acting via the ET(A) receptor, suppresses CD36 protein expression in VSMCs by activation of the tyrosine kinase and ERK pathways.  相似文献   

9.
U Mrwa  J C Rüegg 《FEBS letters》1975,60(1):81-84
Rat liver microsomal membranes have been shown to contain a biosynthetic pathway of UDP-glucose. In addition, they are able to bind UDP-glucose in a reversible manner, As UDP-glucose is also metabolized in these membranes, the study of the binding has been performed with a microsomal Triton X 100 extract. This reversible binding depends on pH (maximum at pH 8.1) and manganous ions, and disappears at pH 6.5. It exhibits a high affinity (K-diss equals 3 mu M), and a narrow specifity for UDP-glucose. Proteolytic digestion inhibits the binding up to 90%, showing that the UDP-glucose receptor has a proteic nature. These binding characteristics have been also found in the membranes themselves, indicating that the detergent solubilization does not destroy the protein binding capacity.  相似文献   

10.
S-Nitrosothiols (S-nitrosocysteine, S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine), which belong to the group of endothelium-derived relaxing factors (EDRFs), caused decreases of cytosolic free Ca2+ concentrations ([Ca2+]i) in cultured rat vascular smooth muscle cells (VSMCs). The endothelin-1 (ET-1)-induced sustained increase of [Ca2+]i in rat VSMCs was completely abolished by preaddition of at least an equal molar quantity of S-nitrosocysteine (Cys-SNO). Also exposure of VSMCs to a mixture of Cys-SNO and ET-1 at the same time resulted in the transient increase only. These results suggest that S-nitrosothiols may have no significant effect on ET-1-induced Ca2+ release from intracellular stores via inositol 1,4,5-triphosphate production but do affect Ca2+ influx through Ca2+ channels in the plasma membrane.  相似文献   

11.
Platelet-derived growth factor (PDGF) and angiotensin II (AII) are thought to mediate their biological effects in vascular smooth muscle cells (VSMCs) by causing alterations in cytosolic free calcium ([ Ca2+]i). In this study we examine the pathways by which PDGF and AII alter [Ca2+]i in VSMCs. Addition of PDGF resulted in a rapid, transient, concentration-dependent increase in [Ca2+]i; this rise in [Ca2+]i was blocked completely by preincubation of cells with ethylene glycol-bis (beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) or CoCl2, by the voltage-sensitive Ca2+-channel antagonists verapamil or nifedipine, by 12-O-tetradecanoylphorbol-13-acetate (TPA), or by pertussis toxin. AII also caused an increase in [Ca2+]i; however, AII-stimulated alterations in [Ca2+]i displayed different kinetics compared with those caused by PDGF. Pretreatment of cells with 8-(diethylamine)-octyl-3,4,5-trimethyoxybenzoate hydrochloride (TMB-8), almost totally inhibited AII-induced increases in [Ca2+]i. EGTA or CoCl2 only slightly diminished AII-stimulated increases in [Ca2+]i. Nifedipine, verapamil, TPA, and pertussis toxin pretreatment were without effect on AII-induced increases in [Ca2+]i. PDGF and AII both stimulated increases in total inositol phosphate accumulation, although the one-half maximal concentration (ED50) for alterations in [Ca2+]i and phosphoinisitide hydrolysis differed by a factor of 10 for PDGF (3 X 10(-10) M for Ca2+ vs. 2.5 X 10(-9) M for phosphoinositide hydrolysis), but they were essentially identical for AII (7.5 X 10(-9) M for Ca2+ vs. 5.0 X 10(-9) M for phosphoinositide hydrolysis). PDGF stimulated mitogenesis (as measured by [3H]-thymidine incorporation into DNA) in VSMCs with an ED50 similar to that for PDGF-induced alterations in phosphoinositide hydrolysis. PDGF-stimulated mitogenesis was blocked by pretreatment of cells with voltage-sensitive Ca2+ channel blockers, TPA, or pertussis toxin. These results suggest that PDGF and AII cause alterations in [Ca2+]i in VSMCs by at least quantitatively distinct mechanisms. PDGF binding activates a pertussis-toxin-sensitive Ca2+ influx into cells via voltage-sensitive Ca2+ channels (blocked by EGTA, verapamil, and nifedipine), as well as stimulating phosphoinositide hydrolysis leading to release of Ca2+ from intracellular stores. AII-induced alterations in [Ca2+]i are mainly the result of phosphoinositide hydrolysis and consequent entry of Ca2+ into the cytoplasm from intracellular stores. Our data also suggest that changes in [Ca2+]i caused by PDGF are required for PDGF-stimulated mitogenesis.  相似文献   

12.
Incubation of big endothelin-1 (big ET-1, 1-39) with the membrane fraction obtained from cultured vascular smooth muscle cells (VSMCs) resulted in an increase in immunoreactive-ET (IR-ET), which was inhibited by EDTA but not by phosphoramidon, a metalloproteinase inhibitor. When the incubation was performed in the presence of N-ethylmaleimide (NEM), the generation of IR-ET was markedly augmented and this augmentation was abolished by phosphoramidon. The pH profile for IR-ET generation in the presence of NEM was apparently distinct from that observed in the absence of NEM. Reverse-phase HPLC of the incubation mixture with or without NEM revealed one major IR-ET component corresponding to the elution position of synthetic ET-1 (1-21). When the cultured VSMCs were incubated with big ET-1, a conversion to the mature ET-1 was observed. This ET-1 generation from exogenously applied big ET-1 was markedly inhibited by the addition of phosphoramidon, although the inhibitor did not influence the basal secretion of ET-1-like materials. These results suggest the presence of two types of metalloproteinases, which can generate ET-1, in VSMCs. The possibility that ET-1 functions in an autocrine manner to control the cardiovascular system warrants further attention.  相似文献   

13.
Alpha 1-adrenergic receptor (alpha 1R) mediated increases in the cytosolic levels of free Ca+2 and the inositol phosphates were measured in a smooth muscle cell line, DDT1. Norepinephrine (NE) stimulated a rapid increase in cytosolic Ca+2 by two distinct components: 1) release of Ca+2 from intracellular sites (mobilization), and 2) influx of extracellular Ca+2. The mobilization component was not affected by removal of extracellular Ca+2 or addition of La+3 or Co+2 to the buffer. The influx component was abolished by EGTA, La+3, or Co+2, but was not affected by the voltage-operated Ca+2 channel blockers diltiazem or nifedipine. Depolarization of DDT1 cells with 100 mM KCl or with gramicidin did not induce Ca+2 influx. NE also increased inositol trisphosphate to 78% over basal levels within 1 minute. These results suggest that alpha 1R on DDT1 cells are coupled to both the mobilization of intracellular Ca+2 and to receptor-operated Ca+2 channels in the plasma membrane, and that polyphosphoinositide hydrolysis may play a role in these phenomena.  相似文献   

14.
Vascular smooth muscle contractile state is regulated by intracellular calcium levels. Nitric oxide causes vascular relaxation by stimulating production of cyclic GMP, which activates type I cGMP-dependent protein kinase (PKGI) in vascular smooth muscle cells (VSMC), inhibiting agonist-induced intracellular Ca2+ mobilization ([Ca2+]i). The relative roles of the two PKGI isozymes, PKGIalpha and PKGIbeta, in cyclic GMP-mediated inhibition of [Ca2+]i in VSMCs are unclear. Here we have investigated the ability of PKGI isoforms to inhibit [Ca2+]i in response to VSMC activation. Stable Chinese hamster ovary cell lines expressing PKGIalpha or PKGIbeta were created, and the ability of PKGI isoforms to inhibit [Ca2+]i in response to thrombin receptor stimulation was examined. In Chinese hamster ovary cells stably expressing PKGIalpha or PKGIbeta, 8-Br-cGMP activation suppressed [Ca2+]i by thrombin receptor activation peptide (TRAP) by 98 +/- 1 versus 42 +/- 5%, respectively (p <0.002). Immunoblotting studies of cultured human VSMC cells from multiple sites using PKGIalpha- and PKGIbeta-specific antibodies showed PKGIalpha is the predominant VSMC PKGI isoform. [Ca2+]i following thrombin receptor stimulation was examined in the absence or presence of cyclic GMP in human coronary VSMC cells (Co403). 8-Br-cGMP significantly inhibited TRAP-induced [Ca2+]i in Co403, causing a 4-fold increase in the EC50 for [Ca2+]i. In the absence of 8-Br-cGMP, suppression of PKGIalpha levels by RNA interference (RNAi) led to a significantly greater TRAP-stimulated rise in [Ca2+]i as compared with control RNAi-treated Co403 cells. In the presence of 8-Br-cGMP, the suppression of PKGIalpha expression by RNAi led to the complete loss of cGMP-mediated inhibition of [Ca2+]i. Adenoviral overexpression of PKGIbeta in Co403 cells was unable to alter TRAP-stimulated Ca2+ mobilization either before or after suppression of PKGIalpha expression by RNAi. These results support that PKGIalpha is the principal cGMP-dependent protein kinase isoform mediating inhibition of VSMC activation by the nitric oxide/cyclic GMP pathway.  相似文献   

15.
Numerous studies have shown that both vasoconstrictive peptide endothelin-1 (ET-1) and inflammatory marker C-reactive protein (CRP) are implicated in the inflammatory process of atherosclerosis. The purpose of the present study was to observe effect of ET-1 on CRP production and the molecular mechanisms in rat vascular smooth muscle cells (VSMCs). The results showed that ET-1 was capable of stimulating VSMCs to produce CRP both in protein and in mRNA levels in vitro and in vivo. ETA receptor antagonist BQ123, but not ETB receptor antagonist BQ788, inhibited CRP production in VSMCs. In addition, ET-1 was able to elicit reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPK) activation, and antioxidant pyrrolidine dithiocarbamate and p38MAPK inhibitor SB203580 inhibited ET-1-induced CRP expression. The results demonstrate that ET-1 induces CPR production in VSMCs via ETA receptor followed by ROS and MAPK signal pathway, which may contribute to better understanding of the role of ET-1 in inflammatory activation of the vessel wall during atherogenesis.  相似文献   

16.
17.
The voltage-dependent slow channels in the myocardial cell membrane are the major pathway by which Ca2+ ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac muscle. The slow channels have some special properties, including functional dependence on metabolic energy, selective blockade by acidosis, and regulation by the intracellular cyclic nucleotide levels. Because of these special properties of the slow channels, Ca2+ influx into the myocardial cell can be controlled by extrinsic factors (such as autonomic nerve stimulation or circulating hormones) and by intrinsic factors (such as cellular pH or ATP level). The slow Ca2+ channels of the heart are regulated by cAMP in a stimulatory fashion. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a slow channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate Isi, Ca2+ influx, and contraction. The myocardial slow Ca2+ channels are also regulated by cGMP, in a manner that is opposite to that of CAMP. The effect of cGMP is presumably mediated by means of phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the slow channel. Preliminary data suggest that calmodulin also may play a role in regulation of the myocardial slow Ca2+ channels, possibly mediated by the Ca2+-calmodulin-protein kinase and phosphorylation of some regulatory-type of protein. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors.VSM cells contain two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Although regulation of voltage-dependent Ca2+ slow channels of VSM cells have not been fully clarified yet, we have made some progress towards answering this question. Slow (L-type, high-threshold) Ca2+ channels may be modified by phosphorylation of the channel protein or an associated regulatory protein. In contrast to cardiac muscle where cAMP and cGMP have antagonistic effects on Ca2+ slow channel activity, in VSM, cAMP and cGMP have similar effects, namely inhibition of the Ca2+ slow channels. Thus, any agent that elevates cAMP or cGMP will inhibit Ca2+ influx, and thereby act to produce vasodilation. The Ca2+ slow channels require ATP for activity, with a K0.5 of about 0.3 mM. C-kinase may stimulate the Ca2+ slow channels by phosphorylation. G-protein may have a direct action on the Ca2+ channels, and may mediate the effects of activation of some receptors. These mechanisms of Ca2+ channel regulation may be invoked during exposure to agonists or drugs, which change second messenger levels, thereby controlling vascular tone.  相似文献   

18.
Arginine vasopressin (AVP)-induced formation of inositol phosphates and increased calcium efflux in smooth muscle cells (A-10) were inhibited by short term treatment with phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C (Ca2+/phospholipid-dependent protein kinase) (Aiyar, N., Nambi, P., Whitman, M., Stassen, F. L., and Crooke, S. T. (1987) Mol. Pharmacol. 31, 180-184). Here we report that prolonged treatment of A-10 cells (48 h) with PDBu markedly enhanced AVP-induced calcium mobilization but inhibited ATP- and thrombin-induced calcium mobilization. PDBu (400 nM) doubled [Ca2+]i induced with 3 nM AVP, while the basal calcium concentrations before and after AVP were not different from those of untreated cells. The EC50 for a 24-h exposure was 2.3 nM PDBu. Phorbol 12-myristate 13-acetate was also effective, while 4-alpha-phorbol 12,13-didecanoate (48 h at 400 nM) was without effect. 4-alpha-phorbol 12,13-didecanoate also did not affect inositol phosphate formation. PDBu markedly enhanced inositol phosphate formation induced by AVP but not by NaF. PDBu did not affect basal inositol phosphate and polyphosphoinositide levels, and cytosolic and membrane-associated phospholipase C activity. PDBu treatment (48 h, 400 nM) decreased membrane-associated and cytosolic protein kinase C activity by 80 and 90%, respectively. However, the dose response and time course of changes in protein kinase C activity did not correlate with the same curves for PDBu enhancement of AVP-induced calcium mobilization. We conclude that prolonged PDBu treatment selectively enhanced AVP-induced calcium mobilization and polyphosphoinositide hydrolysis. These effects were not caused by an increase in vasopressin receptor number and apparent affinity, an increase in phospholipase C activity, G-protein-phospholipase C coupling, formation of polyphosphoinositide, or inhibition of inositol phosphate metabolizing enzymes. Enhancement of the AVP responses did not correlate with desensitization or activation of protein kinase C. We suggest that prolonged PDBu treatment might sensitize a putative V1 receptor-G-protein-phospholipase C complex.  相似文献   

19.
When cultured porcine aortic endothelial cells (ECs) were incubated with porcine big endothelin-1 (bit ET-1(1-39)), there was a time-dependent increase in immunoreactive (IR)-ET in the culture supernatant, in addition to an endogenous IR-ET release fron the cells. Reverse-phase HPLC of the culture supernatant revealed one major IR-ET component corresponding to the elution position of synthetic ET-1, thereby indicating that the additional increase in IR-ET was due to the conversion of big ET-1 to mature ET-1(1-21). Phosphoramidon, a metalloproteinase inhibitor, strongly suppressed this increase in IR-ET as well as the endogenous IR-ET release. Cultured vascular smooth muscle cells (VSMCs) also released IR-ET. The apparent conversion of exogenously applied big ET-1 to ET-1 and its inhibition by phosphoramidon were observed using cultured VSMCs, although the enzyme inhibitor did not influence the basal secretion of IR-ET from VSMCs. These results suggest that both cultured ECs and VSMCs can generate ET-1 from exogenously applied big ET-1 via action of the same type of phosphoramidon-sensitive metalloproteinase, which is also involved in the endogenous ET-1 generation in ECs.  相似文献   

20.
Wu SY  Zhang BH  Pan CS  Jiang HF  Pang YZ  Tang CS  Qi YF 《Peptides》2003,24(8):1149-1156
We observed changes of endothelin content and endothelin mRNA in vivo in vascular calcification and in vitro in calcification of vascular smooth muscle cells to explore the role of endothelin in vascular calcification. Calcification model in vivo was induced by administration of Vitamin D(3) plus nicotine. Calcification of vascular smooth muscle cells (VSMCs) was induced by beta-glycerophosphate. Endothelin content was measured by using radioimmunoassay. Endothelin mRNA amount was determined by using competitive quantitative RT-PCR. The results showed that calcium content, 45Ca(2+) uptake and alkaline phosphatase (ALP) activity were increased in calcified VSMCs, compared with controls, but were decreased, compared with calcified VSMCs plus BQ123 group. The endothelin content in the medium and endothelin mRNA in VSMCs were elevated by 35 and 120% (P<0.05), respectively, compared with those normal VSMCs. Calcium content, 45Ca(2+) accumulation and ALP activity in calcified arteries increased by 5.0-, 1.4-, and 1.4-fold. The endothelin levels in plasma and aorta as well as the amount of endothelin mRNA in calcified aorta were increased by 102, 103, and 22%, respectively, compared with control group. However, calcium content, 45Ca(2+) uptake and ALP activity in VDN plus bosentan group was 33, 36.7, and 40.4% lower than those in VDN group. These results indicated an upregulated endothelin gene expression as well as an increased production of endothelin in calcified aorta and VSMCs with BQ123 and bosentan significantly reducing vascular calcification. This suggested that endothelin might be involved in pathogenesis of vascular calcification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号