首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermophile Hydrogenobacter thermophilus cytochrome c(552) (HT) is a stable protein with denaturation temperatures (T(m)) of 109.8 and 129.7 degrees C for the oxidized and reduced forms, respectively [Uchiyama, S., Ohshima, A., Nakamura, S., Hasegawa, J., Terui, N., Takayama, S. J., Yamamoto, Y., Sambongi, Y., and Kobayashi, Y. (2004) J. Am. Chem. Soc. 126, 14684-14685]. The removal of a single hydroxyl group from the hydrophobic core of HT, through the replacement of a Tyr by Phe, resulted in further elevation of the T(m) value of the oxidized form by approximately 6 degrees C, the T(m) value of the reduced one remaining essentially unaltered. As a result, the redox potential of the mutant with higher stability in the oxidized form exhibited a negative shift of approximately 20 mV relative to that of wild-type HT in an enthalpic manner. These findings indicated that the redox function of a protein can be enthalpically regulated through the stability of the oxidized form by altering the contextual stereochemical packing of hydrophobic residues in the protein interior using protein engineering.  相似文献   

2.
The folding mechanism of many proteins involves the population of partially organized structures en route to the native state. Identification and characterization of these intermediates is particularly difficult, as they are often only transiently populated and may play different mechanistic roles, being either on-pathway productive species or off-pathway kinetic traps. Following different spectroscopic probes, and employing state-of-the-art kinetic analysis, we present evidence that the folding mechanism of the thermostable cytochrome c552 from Hydrogenobacter thermophilus does involve the presence of an elusive, yet compact, on-pathway intermediate. Characterization of the folding mechanism of this cytochrome c is particularly interesting for the purpose of comparative folding studies, because H. thermophilus cytochrome c552 shares high sequence identity and structural homology with its homologue from the mesophilic bacterium Pseudomonas aeruginosa cytochrome c551, which refolds through a broad energy barrier without the accumulation of intermediates. Analysis of the folding kinetics and correlation with the three-dimensional structure add new evidence for the validity of a consensus folding mechanism in the cytochrome c family.  相似文献   

3.
4.
Wen X  Bren KL 《Biochemistry》2005,44(13):5225-5233
Proteins in the cytochrome c (cyt c) family with His-Met heme axial ligation display diverse heme electronic structures as revealed by the NMR spectra of their oxidized (paramagnetic) forms. These variations in electronic structure are thought to result primarily from differences in heme axial Met orientation among cyt c species. The factors determining Met orientation in cyts c, however, remain poorly understood. An additional layer of complexity was revealed with the recent finding that the axial Met in Hydrogenobacter thermophilus cytochrome c(552) (Ht cyt c(552)) is fluxional, sampling two conformations rapidly on the NMR time scale, resulting in an unusual compressed range of heme substituent hyperfine shifts [Zhong, L., Wen, X., Rabinowitz, T. M., Russell, B. S., Karan, E. F., and Bren, K. L. (2004) Proc.Natl. Acad. Sci. U.S.A. 101, 8637-8642]. In this work, the (1)H NMR hyperfine shift pattern of Ht cyt c(552) is drastically altered by making the conservative heme pocket mutation Gln64Asn. The mutant (Ht Q64N) displays a pattern of heme hyperfine shifts with a remarkable resemblance to that of structurally homologous Pseudomonas aeruginosa cyt c(551), which has Asn at position 64 and a single heme axial Met conformation. NMR analysis reveals that Asn64 in Ht Q64N is positioned to interact with the axial Met61, whereas the Gln64 in wild-type Ht cyt c(552) is not. It also is found that the heme axial Met is not fluxional in Ht Q64N and has an orientation similar to that in P. aeruginosa cyt c(551). These results indicate that peripheral interactions with the axial Met play an important role in determining axial Met orientation and heme electronic structure in cyts c.  相似文献   

5.
Y Sanbongi  Y Igarashi  T Kodama 《Biochemistry》1989,28(25):9574-9578
The denaturation of the c-type cytochrome of the thermophilic bacterium Hydrogenobacter thermophilus cytochrome c-552 by heat and guanidine hydrochloride was studied by measuring the change in circular dichroic spectra. The melting temperature (T1/2) of cytochrome c-552 in the presence of 1.5 M guanidine hydrochloride was 34 degrees C higher than that of the c-type cytochrome of Pseudomonas aeruginosa cytochrome c-551. Hydrogenobacter cytochrome c-552 is a much more stable protein than cytochrome c-551 of the mesophilic bacterium P. aeruginosa, even though their amino acid sequences are 56% identical and they have numerous other similarities. However, notwithstanding these similarities between the sequences of the cytochromes c-552 and c-551 that were compared, it is very likely that these differences in stability could be due to some heretofore undefined differences in their spatial structures. It has been suggested that alpha-helix structure and electrostatic interaction could be the source of the stable spatial structure of cytochrome c-552.  相似文献   

6.
In order to elucidate the molecular mechanisms responsible for the apparent nonlinear behavior of the temperature dependence of the redox potential of Hydrogenobacter thermophilus cytochrome c552 [Takahashi, Y., Sasaki, H., Takayama, S. J., Mikami, S., Kawano, S., Mita, H., Sambongi, Y., and Yamamoto, Y. (2006) Biochemistry 45, 11005-11011], its heme active site structure has been characterized using variable-temperature and -pressure NMR techniques. The study revealed a temperature-dependent conformational transition between protein structures, which slightly differ in the conformation of the loop bearing the Fe-bound axial Met residue. The heme environment in the protein structure which arises at lower temperature was found to be more polar, as a result of the altered orientation of the loop with respect to the heme due to its conformational change, than that arising at higher temperature. The present study demonstrated the importance of the structural and dynamic properties of the polypeptide chain in close proximity to the heme for redox regulation of the protein.  相似文献   

7.
8.
9.
Crystals of ferrocytochrome c2 from a non-sulphur purple photosynthetic bacterium, Rhodopseudomonas viridis, have been grown from ammonium sulphate solution at pH 8.5 by the sitting-drop vapour-diffusion procedure. The crystals belong to the trigonal system, space group P3(1)21 (or its enantiomorph P3(2)21) with unit-cell dimensions of a = b = 75.8 A and c = 40.1 A, and diffract to at least 2.0 A resolution. Assuming that an asymmetric unit contains one protein molecule (approx. 12,300 Mr), the solvent content of the crystal is approximately 54.5% (v/v).  相似文献   

10.
The complete amino acid sequence of cytochrome c-552 from an extremely thermophilic hydrogen bacterium, Hydrogenobacter thermophilus TK-6 (IAM 12695), was determined. It is a single polypeptide chain of 80 residues, and its molecular weight, including heme, was calculated to be 7,599. The sequence of cytochrome c-552 from H. thermophilus TK-6 closely resembles that of cytochromes c-551 from Pseudomonas species. Moreover, the tertiary structure of Hydrogenobacter cytochrome c-552 is suggested to be similar to that of cytochrome c-551 from Pseudomonas aeruginosa. The sequence similarity between Hydrogenobacter cytochrome c-552 and that of other bacteria physiologically related to H. thermophilus is not high.  相似文献   

11.
Conversion of Hydrogenobacter thermophilus cytochrome c(552) into a b-type cytochrome by mutagenesis of both heme-binding cysteines to alanines significantly reduces the stability of the protein (Tomlinson, E. J., and Ferguson, S. J. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 5156-5160). To understand the effects of this change on the structure and dynamics of the protein, hetero-nuclear (15)N-edited NMR techniques have been used to characterize this b-type variant. The backbone (15)N, (1)H(N), and (1)H(alpha), and (1)H(beta) resonances of the protein have been assigned. Analysis of (3)J(HN)alpha coupling constants, nuclear Overhauser enhancement intensities, and chemical shift index data demonstrates that the four alpha-helices present in the wild-type protein are retained in the b-type variant. Comparison of the chemical shifts for the b-type and wild-type proteins indicates that the tertiary structures of the two proteins are closely similar. Some subtle differences are, however, observed for residues in the N-terminal region and in the vicinity of the heme-binding pocket. Hydrogen exchange studies show that there are 25 backbone amide protons that exchange very slowly in the b-type variant and confirm that the fluctuations within the b-type protein are of a similar extent to those in the wild-type protein. These data demonstrate the notable retention of the native secondary structure and tertiary fold despite the absence of covalent linkages between the heme group and the protein.  相似文献   

12.
Five amino acid residues responsible for extreme stability have been identified in cytochrome c(552) (HT c(552)) from a thermophilic bacterium, Hydrogenobacter thermophilus. The five residues, which are spatially distributed in three regions of HT c(552), were replaced with the corresponding residues in the homologous but less stable cytochrome c(551) (PA c(551)) from Pseudomonas aeruginosa. The quintuple HT c(552) variant (A7F/M13V/Y34F/Y43E/I78V) showed the same stability against guanidine hydrochloride denaturation as that of PA c(551), suggesting that the five residues in HT c(552) necessarily and sufficiently contribute to the overall stability. In the three HT c(552) variants carrying mutations in each of the three regions, the Y34F/Y43E mutations resulted in the greatest destabilization, by -13.3 kJ mol(-1), followed by A7F/M13V (-3.3 kJ mol(-1)) and then I78V (-1.5 kJ mol(-1)). The order of destabilization in HT c(552) was the same as that of stabilization in PA c(551) with reverse mutations such as F34Y/E43Y, F7A/V13M, and V78I (13.4, 10.3, and 0.3 kJ mol(-1), respectively). The results of guanidine hydrochloride denaturation were consistent with those of thermal denaturation for the same variants. The present study established a method for reciprocal mutation analysis. The effects of side-chain contacts were experimentally evaluated by swapping the residues between the two homologous proteins that differ in stability. A comparative study of the two proteins was a useful tool for assessing the amino acid contribution to the overall stability.  相似文献   

13.
Endoglucanase D, a cellulose degradation enzyme from Clostridium thermocellum has been cloned in Escherichia coli, purified and crystallized. The crystals are trigonal, space group P3(1)12 (or P3(2)12) with a = 57.7 (+/- 0.1) A, c = 192.1 (+/- 0.2) A, and diffract X-rays to a resolution of 2.8 A. They are suitable for a high-resolution X-ray diffraction analysis.  相似文献   

14.
A 20,000 Mr xylanase from Trichoderma harzianum has been purified and crystallized from 20% (w/v) saturated ammonium sulphate solutions. The unit cell is orthorhombic, space group P2(1)2(1)2(1), with unit cell lengths a = 44.2 A, b = 94.1 A, c = 51.6 A. Data from native crystals and several potential heavy-atom derivatives have been collected. An X-ray analysis to at least 2.8 A resolution appears to be feasible.  相似文献   

15.
Hydrogenobacter thermophilus cytochrome c(552) ( Ht cyt c(552)) is a small monoheme protein in the cytochrome c(551) family. Ht cyt c(552) is unique because it is hypothesized to undergo spontaneous cytoplasmic maturation (covalent heme attachment) when expressed in Escherichia coli. This is in contrast to the usual maturation route for bacterial cytochromes c that occurs in the cellular periplasm, where maturation factors direct heme attachment. Here, the expression of Ht cyts c(552) in the periplasm as well as the cytoplasm of E. coli is reported. The products are characterized by absorption, circular dichroism, and NMR spectroscopy as well as mass spectrometry, proteolysis, and denaturation studies. The periplasmic product's properties are found to be indistinguishable from those reported for protein isolated from Ht cells, while the major cytoplasmic product exhibits structural anomalies in the region of the N-terminal helix. These anomalies are shown to result from the retention of the N-terminal methionine in the cytoplasmic product, and not from heme attachment errors. The (1)H NMR chemical shifts of the heme methyls of the oxidized ( S=1/2) expression products display a unique pattern not previously reported for a cytochrome c with histidine-methionine axial ligation, although they are consistent with native-like heme ligation. These results support the hypothesis that proper heme attachment can occur spontaneously in the E. coli cytoplasm for Ht cyt c(552).  相似文献   

16.
A heterologous overexpression system for mesophilic Pseudomonas aeruginosa holocytochrome c(551) (PA c(551)) was established using Escherichia coli as a host organism. Amino acid residues were systematically substituted in three regions of PA c(551) with the corresponding residues from thermophilic Hydrogenobacter thermophilus cytochrome c(552) (HT c(552)), which has similar main chain folding to PA c(551), but is more stable to heat. Thermodynamic properties of PA c(551) with one of three single mutations (Phe-7 to Ala, Phe-34 to Tyr, or Val-78 to Ile) showed that these mutants had increased thermostability compared with that of the wild-type. Ala-7 and Ile-78 may contribute to the thermostability by tighter hydrophobic packing, which is indicated by the three dimensional structure comparison of PA c(551) with HT c(552). In the Phe-34 to Tyr mutant, the hydroxyl group of the Tyr residue and the guanidyl base of Arg-47 formed a hydrogen bond, which did not exist between the corresponding residues in HT c(552). We also found that stability of mutant proteins to denaturation by guanidine hydrochloride correlated with that against the thermal denaturation. These results and others described here suggest that significant stabilization of PA c(551) can be achieved through a few amino acid substitutions determined by molecular modeling with reference to the structure of HT c(552). The higher stability of HT c(552) may in part be attributed to some of these substitutions.  相似文献   

17.
Understanding the role of partially folded intermediate states in the folding mechanism of a protein is a crucial yet very difficult problem. We exploited a kinetic approach to demonstrate that a transient intermediate of a thermostable member of the widely studied cytochrome c family (cytochrome c552 from Thermus thermophilus) is indeed on-pathway. This is the first clear indication of an obligatory intermediate in the folding mechanism of a cytochrome c. The fluorescence properties of this intermediate demonstrate that the relative position of the heme and of the only tryptophan residue cannot correspond to their native orientation. Based on an analysis of the three-dimensional structure of cytochrome c552, we propose an interpretation of the data which explains the residual fluorescence of the intermediate and is consistent with the established role played by some conserved interhelical interactions in the folding of other members of this family. A limited set of topologically conserved contacts may guide the folding of evolutionary distant cytochromes c through the same partially structured state, which, however, can play different kinetic roles, acting either as an intermediate or a transition state.  相似文献   

18.
1,3,8-Trihydroxynaphthalene reductase was crystallized in the presence of NADPH and the inhibitor tricyclazole. The crystals are trigonal, space group P3121 or its enantiomorph P3221. Two crystal forms with slightly different cell dimensions were obtained. Form A has unit cell dimensions a = b = 142.6 Å, c = 70.1 Å and form B cell dimensions a = b = 142.6 Å, c = 72.9 Å. The diffraction pattern of the latter crystal form extends to 2.5 Å resolution.  相似文献   

19.
The 16-amino acid sequences of the C-terminal helices of the homologous bacterial cytochromes c551 from Pseudomonas aeruginosa and C552 from Hydrogenobacter thermophilus were synthesized and their solution structure studied. Circular dichroism and NMR experiments in aqueous solution have shown the presence of alpha-helices and 3(10)-helices. The populations of helical structures in phosphate buffer, pH 3.5, 293 K, were 21% for c551 and 20% for c552, but increased to 56.7 and 48%, respectively, in 50% aqueous 2,2,2-trifluoroethanol. An isodichroic point was observed at 203 nm in CD spectra for the helix/coil transition in mixtures of water/2,2,2-trifluoroethanol. NMR spectra in phosphate buffer show the presence of both alpha- and 3(10)-helical structures. In water/2,2,2-trifluoroethanol (50:50) alpha-helices are predominant. CD temperature-dependency studies indicate that both peptides exhibit the same cooperativity for the transition in water/2,2,2-trifluoroethanol (50:50). The experimental data show that the amino acid substitutions do not favor heat resistance of the secondary structure of the c552 C-terminal helix at the local level. Instead, they optimize nonlocal contacts of the polypeptide chain, which stabilize the tertiary structure in the native protein.  相似文献   

20.
Crystals of ILAP (Irpex lacteus aspartic proteinase) have been obtained by the hanging drop method using ammonium sulfate as a precipitant. The crystals are monoclinic, space group P2(1) with cell dimensions a = 54.5 A, b = 79.6 A, c = 37.5 A, beta = 96.8 degrees. The crystals are quite stable to X-rays and diffract beyond 1.9 A resolution. There is one molecule in the asymmetric unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号