首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed kinetic studies on the reactions of a fluorescent ATP analog, 2'-(5-dimethyl-aminonaphthalene-1-sulfonyl) amino-2'-deoxyATP (DNS-ATP), with E. coli F1-ATPase (EF1) and its subunits, to clarify the role of each subunit in the ATPase reaction. The following results were obtained. 1. One mol of EF1, which contains nonexchangeable 2 mol ATP and 0.5 mol ADP, binds 3 mol of DNS-ATP. The apparent dissociation constant, in the presence of Mg2+, was 0.23 microM. Upon binding, the fluorescence intensity of DNS-ATP at 520 nm increased exponentially with t1/2 of 35 s, and reached 3.5 times the original fluorescence level. Following the fluorescence increase, DNS-ATP was hydrolyzed, and the fluorescence intensity maintained its enhanced level. 2. The addition of an excess of ATP over the EF1-DNS-nucleotide complex, in the presence of Mg2+, decreased the fluorescence intensity rapidly, indicating the acceleration of DNS-nucleotide release from EF1. ADP and GTP also decreased the fluorescence intensity. 3. DCCD markedly inhibited the accelerating effect of ATP on DNS-nucleotide release from EF1 and the EF1-DNS-ATPase or -ATPase activity in a steady state. On the other hand, DCCD only slightly inhibited the fluorescence increase of DNS-ATP, due to its binding to EF1, and the rate of single cleavage of 1 mol of DNS-ATP per mol of alpha subunit of EF1. 4. In the presence of Mg2+, 0.65-0.82 mol of DNS-ATP binds to 1 mol of the isolated alpha subunit of EF1 with an apparent dissociation constant of 0.06-0.07 microM. Upon binding, the fluorescence intensity of DNS-ATP at 520 nm increased 1.55 fold very rapidly (t1/2 less than 1 s). No hydrolysis of DNS-ATP was observed upon the addition of the isolated alpha subunit. The fluorescence intensity of DNS-ATP was unaffected by the addition of the isolated beta subunit. DNS-ATP was also unhydrolyzed by the isolated beta subunit. 5. EF1-ATPase was reconstituted from alpha, beta, and gamma subunits in the presence of Mg2+ and ATP. The kinetic properties of the fluorescence change of DNS-ATP in the reaction with the reconstituted EF1-ATPase were quite similar to those of native EF1. Most of our findings are consistent with a simple mechanism that the high affinity catalytic site and low affinity regulatory site exist in the alpha subunit and beta subunit, respectively. However, the findings mentioned in (4) suggest that the binding of the alpha and beta subunit, which is mediated by the gamma subunit, induces conformational change(s) in the ATP binding site located probably in the alpha subunit, and that the conformational change(s) is essential to exert the full hydrolyzing activity.  相似文献   

2.
The interactions of a novel fluorescent compound, 1-(2-methylphenyl)-4-methylamino-6-methyl-2,3-dihydropyrrolo[3,2-c ]quinoline (MDPQ) with the gastric H,K-ATPase were determined. MDPQ was shown to inhibit the H,K-ATPase and its associated K(+)-phosphatase competitively with K+, with Ki values of 0.22 and 0.65 microM, respectively. It also inhibited H+ transport with an IC50 of 0.29 microM, but at a concentration of 3.5 microM, reduced the steady-state level of phosphoenzyme by only 28%. The fluorescence of the inhibitor increased upon binding to the enzyme. 70% of this increment was quenched by K+, independently of Mg2+. The binding of MgATP to a high affinity site (K0.5(ATP) less than 1 microM) markedly increased the fluorescence due to the formation of an inhibitor-phosphoenzyme complex saturating with a K0.5(MDPQ) of 0.94 microM. The K(+)-dependent fluorescent quench (K0.5(K+) = 1.8 mM) required the ionophore, nigericin, indicating that K+ and MDPQ were competing at an extracytosolic site on the enzyme. Formation also of an enzyme-vanadyl-inhibitor complex was shown by the fact that Mg2+ plus vanadate enhanced MDPQ fluorescence in the absence of MgATP and decreased fluorescence in the presence of MgATP. The minimal stoichiometry of bound MDPQ determined by fluorescence titrations in the presence of MgATP was 1.4 mol/mol phosphoenzyme. The data suggest that this compound can serve as a probe of conformation at an extracytosolic site of the H,K-ATPase.  相似文献   

3.
The photoaffinity reagent 8-azido-2'-O-[14C]dansyl-ATP (AD-ATP) has been synthesized for labeling and monitoring the active sites of ATPases and kinases. In its first application, the reagent is used to explore the active site of adenylate kinase from rabbit muscle. In the dark, AD-ATP inhibits adenylate kinase reversibly and competitively with KI = 0.25 +/- 0.01 microM. Under weak UV illumination, AD-ATP labels adenylate kinase irreversibly. The photoinactivation data also show KI = 0.25 +/- 0.02 microM. The ratio (r) of the specific activity of AD-ATP-labeled adenylate kinase to that of the unlabeled enzyme has been determined as a function of the number (n) of label/enzyme. The linear plot of r versus n with slope equal to -1 shows that the labeling is very specific, i.e. each label completely inactivates an enzyme molecule. After the labeled enzyme was partially hydrolyzed and the radioactive peptides analyzed and sequenced, it was found that Leu-115, Cys-25, and probably His-36 were labeled, in agreement with previous conclusions on the structure of the active site of this enzyme based on amino acid sequence, x-ray diffraction, and NMR studies. The environment-sensitive fluorescent dansyl group of AD-ATP can function as an in situ probe for monitoring ligand or conformation changes at the active site. The fluorescence of AD-ATP-labeled enzyme with n = 0.9 is not affected by ATP but increases with the concentration of AMP in solution. This observation is also in agreement with the previous conclusion that ATP does not bind to the AMP site of adenylate kinase. The observed enhancement of fluorescence indicates that binding of AMP by this enzyme causes environmental change at its ATP site. The possible usefulness of AD-ATP as an effective biological inhibitor or as a molecular probe for studying the structure and regulation of ATP-binding proteins is discussed.  相似文献   

4.
The binding and conformational properties of the divalent cation site required for H+,K(+)-ATPase catalysis have been explored by using Ca2+ as a substitute for Mg2+. 45Ca2+ binding was measured with either a filtration assay or by passage over Dowex cation exchange columns on ice. In the absence of ATP, Ca2+ was bound in a saturating fashion with a stoichiometry of 0.9 mol of Ca2+ per active site and an apparent Kd for free Ca2+ of 332 +/- 39 microM. At ATP concentrations sufficient for maximal phosphorylation (10 microM), 1.2 mol of Ca2+ was bound per active site with an apparent Kd for free Ca2+ of 110 +/- 22 microM. At ATP concentrations greater than or equal to 100 microM, 2.2 mol of Ca2+ were bound per active site, suggesting that an additional mole of Ca2+ bound in association with low affinity nucleotide binding. At concentrations sufficient for maximal phosphorylation by ATP (less than or equal to 10 microM), APD, ADP + Pi, beta,gamma-methylene-ATP, CTP, and GTP were unable to substitute for ATP. Active site ligands such as acetyl phosphate, phosphate, and p-nitrophenyl phosphate were also ineffective at increasing the Ca2+ affinity. However, vanadate, a transition state analog of the phosphoenzyme, gave a binding capacity of 1.0 mol/active site and the apparent Kd for free Ca2+ was less than or equal to 18 microM. Mg2+ displaced bound Ca2+ in the absence and presence of ATP but Ca2+ was bound about 10-20 times more tightly than Mg2+. The free Mg2+ affinity, like Ca2+, increased in the presence of ATP. Monovalent cations had no effect on Ca2+ binding in the absence of ATP but dit reduce Ca2+ binding in the presence of ATP (K+ = Rb+ = NH4 + greater than Na+ greater than Li+ greater than Cs+ greater than TMA+, where TMA is tetramethylammonium chloride) by reducing phosphorylation. These results indicate that the Ca2+ and Mg2+ bound more tightly to the phosphoenzyme conformation. Eosin fluorescence changes showed that both Ca2+ and Mg2+ stabilized E1 conformations (i.e. cytosolic conformations of the monovalent cation site(s)) (Ca.E1 and Mg.E1). Addition of the substrate acetyl phosphate to either Ca.E1 or Mg.E1 produced identical eosin fluorescence showing that Ca2+ and Mg2+ gave similar E2 (extracytosolic) conformations at the eosin (nucleotide) site. In the presence of acetyl phosphate and K+, the conformations with Ca2+ or Mg2+ were also similar. Comparison of the kinetics of the phosphoenzyme and Ca2+ binding showed that Ca2+ bound prior to phosphorylation and dissociated after dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The MgATP complex analogue cobalt-tetrammine-ATP [Co(NH3)4ATP] inactivates (Na+ + K+)-ATPase at 37 degrees C slowly in the absence of univalent cations. This inactivation occurs concomitantly with incorporation of radioactivity from [alpha-32P]Co(NH3)4ATP and from [gamma-32P]Co(NH3)4ATP into the alpha subunit. The kinetics of inactivation are consistent with the formation of a dissociable complex of Co(NH3)4ATP with the enzyme (E) followed by the phosphorylation of the enzyme: (Formula: see text). The dissociation constant of the enzyme-MgATP analogue complex at 37 degrees C is Kd = 500 microM, the inactivation rate constant k2 = 0.05 min-1. ATP protects the enzyme against the inactivation by Co(NH3)4ATP due to binding at a site from which it dissociates with a Kd of 360 microM. It is concluded, therefore, that Co(NH3)4ATP binds to the low-affinity ATP binding site of the E2 conformational state. K+, Na+ and Mg2+ protect the enzyme against the inactivation by Co(NH3)4ATP. Whilst Na+ or Mg2+ decrease the inactivation rate constant k2, K+ exerts its protective effect by increasing the dissociation constant of the enzyme.Co(NH3)4ATP complex. The Co(NH3)4ATP-inactivated (Na+ + K+)-ATPase, in contrast to the non-inactivated enzyme, incorporates [3H]ouabain. This indicates that the Co(NH3)4ATP-inactivated enzyme is stabilized in the E2 conformational state. Despite the inactivation of (Na+ + K+)-ATPase by Co(NH3)4ATP from the low-affinity ATP binding site, there is no change in the capacity of the high-affinity ATP binding site (Kd = 0.9 microM) nor of its capability to phosphorylate the enzyme Na+-dependently. Since (Na+ + K+)-ATPase is phosphorylated Na+-dependently from the high-affinity ATP binding site although the catalytic cycle is arrested in the E2 conformational state by specific modification of the low-affinity ATP binding site, it is concluded that both ATP binding sites coexist at the same time in the working sodium pump. This demonstration of interacting catalytic subunits in the E1 and E2 conformational states excludes the proposal that a single catalytic subunit catalyzes (Na+ + K+)-transport.  相似文献   

6.
The amount of Ca2+ bound to the Ca2+,Mg2+-dependent ATPase of deoxycholic acid-treated sarcoplasmic reticulum was measured during ATP hydrolysis by the double-membrane filtration method [Yamaguchi, M. & Tonomura, Y. (1979), J. Biochem. 86, 509--523]. The maximal amount of phosphorylated intermediate (EP) was adopted as the amount of active site of the ATPase. In the absence of ATP, 2 mol of Ca2+ bound cooperatively to 1 mol of active site with high affinity and were removed rapidly by addition of EGTA. AMPPNP did not affect the Ca2+ binding to the ATPase in the presence of MgCl2. Under the conditions where most EP and ADP sensitive at steady state (58 microM Ca2+, 50 microM EGTA, and 20 mM MgCl2 at pH 7.0 and 0 degrees C), bound Ca2+ increased by 0.6--0.7 mol per mol active site upon addition of ATP. The time course of decrease in the amount of bound 45Ca2+ on addition of unlabeled Ca2+ + EGTA was biphasic, and 70% of bound 45Ca2+ was slowly displaced with a rate constant similar to that of EP decomposition. Similar results were obtained for the enzyme treated with N-ethylmaleimide, which inhibits the step of conversion of ADP-sensitive EP to the ADP-insensitive one. Under the conditions where most EP was ADP insensitive at steady state (58 microM Ca2+, 30 microM EGTA, and 20 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ increased slightly, then decreased slowly by 1 mol per mol of EP formed after addition of ATP. Under the conditions where about a half of EP was ADP sensitive (58 microM Ca2+, 25 microM EGTA, and 1 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ did not change upon addition of ATP. These findings suggest that the Ca2+ bound to the enzyme becomes unremovable by EGTA upon formation of ADP-sensitive EP and is released upon its conversion to ADP-insensitive EP.  相似文献   

7.
Sarcoplasmic reticulum vesicles were modified with a fluorescent thiol reagent, N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine. One mol of readily reactive thiols per mol of the Ca2+-ATPase was labeled without a loss of the catalytic activity. The fluorescence of the label increased by 8% upon binding of Ca2+ to the high affinity sites of the enzyme. This fluorescence enhancement probably reflects a conformational change responsible for Ca2+-induced enzyme activation. Upon addition of ATP to the Ca2+-activated enzyme, the fluorescence decreased by 15%. This fluorescence drop and formation of the phosphoenzyme intermediate were determined under the same conditions with a stopped-flow apparatus and a rapid quenching system. The amplitude of the fluorescence drop thus determined was saturated with 3 microM ATP. This shows that the fluorescence drop was caused by ATP binding to the catalytic site. In contrast, the rate of the fluorescence drop was not saturated even with 50 microM ATP. The fluorescence drop coincided with phosphoenzyme formation at 0.5 or 3 microM ATP, but it became much faster than phosphoenzyme formation when the ATP concentration was raised to 100 microM. These results indicate that the ATP-induced fluorescence drop reflects a conformational change in the enzyme.ATP complex. The fluorescence drop was accompanied by a red spectrum shift, which suggests that the label was exposed to a more hydrophilic environment. The electrophoretic analysis of the tryptic digest of the labeled enzyme (10.9 kDa) showed that almost all of the label was located on the 5.2-kDa fragment which includes the carboxyl terminus and the putative ATP-binding domain. The sequencing of the two major labeled peptides, which were isolated from the thermolytic digest of the labeled enzyme, revealed that the labeled site in either of these peptides was Cys674. It seems likely that the label bound to this Cys674 could be involved in the observed fluorescence changes.  相似文献   

8.
Eosin has been used as a fluorescent probe for studying conformational states in (K+ + H+)-ATPase. The eosin fluorescence level is increased by Mg2+ (K0.5 = 0.2 mM). This increase is counteracted by K+ (I0.5 = 1.3 mM) and choline (I0.5 = 17.2 mM) and by ATP. Binding studies with eosin indicate that the increase and decrease in fluorescence is due to changes in binding of eosin to the enzyme. The Mg2+-induced specific binding has a Kd of 0.7 microM and a maximal capacity of 3.5 nmol per mg enzyme, which is equivalent to 2.5 site per phosphorylation site. These experiments and the fact that eosin competitively inhibits (K+ + H+)-ATPase towards ATP, suggest that eosin binds to ATP binding sites.  相似文献   

9.
The plasma membrane of yeasts contains an H+-ATPase similar to the other cation transport ATPases of eukaryotic organisms. This enzyme has been purified and shows H+ transport in reconstituted vesicles. In the presence of Mg2+, formycin triphosphate (FTP) is hydrolyzed by the H+-ATPase and supports H+ transport. When combined with terbium ion, FTP (Tb-FTP) and ATP (Tb-ATP) are no longer hydrolyzed. Competition between Mg-ATP and Tb-FTP for ATP hydrolysis indicates that terbium-associated nucleotides bind to the catalytic site of the H+-ATPase. The fluorescent properties of the Tb-FTP complex were used to study the active site of the H+-ATPase. Fluorescence of Tb-FTP is greatly enhanced upon binding into the nucleotide site of H+-ATPase with a dissociation constant of 1 microM. Tb-ATP, Tb-ADP, and Tb-ITP are competitive inhibitors of Tb-FTP binding with Ki = 4.5, 5.0, and 6.0 microM, respectively. Binding of Tb-FTP is observed only in the presence of an excess of Tb3+ with an activation constant Ka = 25 microM for Tb3+. Analysis of the data reveals that the sites for Tb-FTP and Tb3+ binding are independent entities. In standard conditions these sites would be occupied by Mg-ATP and Mg2+, respectively. These findings suggest an important regulatory role of divalent cations on the activity of H+-ATPase. Replacement of H2O by D2O in the medium suggests the existence of two types of nucleotide binding sites differing by the hydration state of the Tb3+ ion in the bound Tb-FTP complex.  相似文献   

10.
The purpose of this study was to probe the regulatory nucleotide site of the Ca2+-ATPase of sarcoplasmic reticulum and to study its relationship with the catalytic nucleotide site. Our approach was to use the nucleotide analogue 2'(3')-O-(2,4,6-trinitrocyclohexadienylidene)adenosine 5'-phosphate (TNP-AMP), which is known to bind the Ca2+-ATPase with high affinity and to undergo a manyfold increase in fluorescence upon enzyme phosphorylation with ATP in the presence of Ca2+. TNP-AMP was shown to bind the regulatory site in that it competitively inhibited (Ki = 0.6 microM) the secondary activation of turnover induced by millimolar ATP, thus providing a high affinity probe for the site. Observation of the high phosphoenzyme-dependent fluorescence upon monomerization of the enzyme without an increase in phosphoenzyme levels showed the regulatory site to be on the same subunit as the catalytic site and excluded an uncovering of "silent" nucleotide sites resulting from dissociation of enzyme subunits. Identical stoichiometric levels of [3H]TNP-AMP binding (4 nmol/mg of protein) to either the free enzyme or the enzyme phosphorylated with 250 microM ATP excluded models of two nucleotide sites per subunit. Finally, transient kinetic experiments in which TNP-AMP was found to block the ADP-induced burst of phosphoenzyme decomposition showed that TNP-AMP was bound to the phosphorylated catalytic site. We conclude that the regulatory nucleotide site is not a separate and distinct site on the Ca2+-ATPase but, rather, results from the nucleotide catalytic site following formation of the phosphorylated enzyme intermediate.  相似文献   

11.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   

12.
The binding of divalent cations and nucleotide to bovine brain glutamine synthetase and their effects on the activity of the enzyme were investigated. In ADP-supported gamma-glutamyl transfer at pH 7.2, kinetic analyses of saturation functions gave [S]0.5 values of approximately 1 microM for Mn2+, approximately 2 mM for Mg2+, 19 nM for ADP.Mn, and 7.2 microM for ADP.Mg. The method of continuous variation applied to the Mn2+-supported reaction indicated that all subunits of the purified enzyme express activity when 1.0 equiv of ADP is bound per subunit. Measurements of equilibrium binding of Mn2+ to the enzyme in the absence and presence of ADP were consistent with each subunit binding free Mn2+ (KA approximately equal to 1.5 X 10(5) M-1) before binding the Mn.ADP complex (KA' approximately equal to 1.1 X 10(6) M-1). The binding of the first Mn2+ or Mg2+ to each subunit produces structural perturbations in the octameric enzyme, as evidenced by UV spectral and tryptophanyl residue fluorescence changes. The enzyme, therefore, has one structural site per subunit for Mn2+ or Mg2+ and a second site per subunit for the metal ion-nucleotide complex, both of which must be filled for activity expression. Chloride binding (KA' approximately equal to 10(4) M-1) to the enzyme was found to have a specific effect on the protein conformation, producing a substantial (30%) quench of tryptophanyl fluorescence and increasing the affinity of the enzyme 2-4-fold for Mg2+ or Mn2+. Arsenate, which activates the gamma-glutamyl transfer activity by binding to an allosteric site, and L-glutamate also cause conformational changes similar to those produced by Cl- binding. Anion binding to allosteric sites and divalent metal ion binding at active sites both produce tryptophanyl residue exposure and tyrosyl residue burial without changing the quaternary enzyme structure.  相似文献   

13.
The purified proton ATPase of chromaffin granules contains five different polypeptides denoted as subunits I to V in the order of decreasing molecular weights of 115,000, 72,000, 57,000, 39,000, and 17,000, respectively. The purified enzyme was reconstituted as a highly active proton pump, and the binding of N-ethylmaleimide and nucleotides to individual subunits was studied. N-Ethylmaleimide binds to subunits I, II, and IV, but inhibition of both ATPase and proton pumping activity correlated with binding to subunit II. In the presence of ADP, the saturation curve of ATP changed from hyperbolic to a sigmoid shape, suggesting that the proton ATPase is an allosteric enzyme. Upon illumination of the purified enzyme in the presence of micromolar concentrations of 8-azido-ATP, alpha-[35S]ATP, or alpha-[32P]ATP subunits I, II, and IV were labeled. However, at concentrations of alpha-[32P]ATP below 0.1 microM, subunit II was exclusively labeled in both the purified and reconstituted enzyme. This labeling was absolutely dependent on the presence of divalent cations, like Mg2+ and Mn2+, while Ca2+, Co2+, and Zn2+ had little or no effect. About 0.2 mM Mg2+ was required to saturate the reaction even in the presence of 50 nM alpha-[32P]ATP, suggesting a specific and separate Mg2+ binding site on the enzyme. Nitrate, sulfate, and thiocyanate at 100 mM or N-ethylmaleimide and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole at 100 microM prevented the binding of the nucleotide to subunit II. The labeling of this subunit was effectively prevented by micromolar concentrations of three phosphonucleotides including those that cannot serve as substrate for the enzyme. It is concluded that a tightly bound ADP on subunit II is necessary for the activity of the enzyme.  相似文献   

14.
The kinetic parameters for the hydrolysis by F1 of the photoreactive nucleotide analogue 2-azido-ATP were determined (Vmax, 105 U/mg F1; Km, 250 microM, in the presence of 1.0 mM SO2-3). In the absence of an activating anion, a non-linear relationship in a Lineweaver-Burk plot was found for the hydrolysis of 2-azido-ATP. The 2-azido-analogues of ATP and ADP proved to be good photoaffinity labels causing notable inactivation of the F1-ATPase activity upon irradiation at 360 nm. This inhibition was also used to demonstrate high-affinity binding of these analogues to a catalytic binding site on the F1. High-affinity binding proved to be an Mg2+-requiring process, occurring with both 2-azido-ATP and 2-azido-ADP but hardly or not occurring with 8-azido-AT(D)P. Covalent binding of 2-nitreno-ATP upon irradiation of F1 containing tightly bound [beta-32P]2-azido-ATP results in a proportional inhibition of ATPase activity, extrapolating to 0.92 mol of covalently bound label per mol of F1 needed for the complete inactivation of the enzyme. When the F1 was irradiated in the presence of excess [beta-32P]2-azido-AT(D)P, 3-4 mol of label were bound when the enzyme was fully inactivated. In all cases, all or most of the radioactivity was found on the beta subunits.  相似文献   

15.
Z X Xue  J M Zhou  T Melese  R L Cross  P D Boyer 《Biochemistry》1987,26(13):3749-3753
The photolabeling of chloroplast F1 ATPase, following exposure to Mg2+ and 2-azido-ATP and separation from medium nucleotides, results in derivatization of two separate peptide regions of the beta subunit. Up to 3 mol of the analogue can be incorporated per mole of CF1, with covalent binding of one moiety or two moieties per beta subunit that can be either AMP, ADP, or ATP derivatives. These results, the demonstration of noncovalent tight binding of at least four [3H]adenine nucleotides to the enzyme and the presence of three beta subunits per enzyme, point to six potential adenine nucleotide binding sites per molecule. The tightly bound 2-azido nucleotides on CF1, found after exposure of the heat-activated and EDTA-treated enzyme to Mg2+ and 2-azido-ATP, differ in their ease of replacement during subsequent hydrolysis of ATP. Some of the bound nucleotides are not readily replaced during catalytic turnover and covalently label one peptide region of the beta subunit. They are on noncatalytic sites. Other tightly bound nucleotides are readily replaced during catalytic turnover and label another peptide region of the beta subunit. They are at catalytic sites. No alpha-subunit labeling is detected upon photolysis of the bound 2-azido nucleotides. However, one or both of the sites could be at an alpha-beta-subunit interface with the 2-azido region close to the beta subunit, or both binding sites may be largely or entirely on the beta subunit.  相似文献   

16.
The recent finding that the presence of ATP at non-catalytic sites of chloroplast F1-ATPase (CF1) is necessary for ATPase activity (Milgrom, Y. M., Ehler, L. L., and Boyer, P. D. (1990) J. Biol. Chem. 265,18725-18728) prompted more detailed studies of the effect of noncatalytic site nucleotides on catalysis. CF1 containing at noncatalytic sites less than one ADP or about two ATP was prepared by heat activation in the absence of Mg2+ and in the presence of ADP or ATP, respectively. After removal of medium nucleotides, the CF1 preparations were used for measurement of the time course of nucleotide binding from 10 to 100 microM concentrations of 3H-labeled ADP, ATP, or GTP. The presence of Mg2+ strongly promotes the tight binding of ADP and ATP at noncatalytic sites. For example, the ADP-heat-activated enzyme in presence of 1 mM Mg2+ binds ADP with a rate constant of 0.5 x 10(6) M-1 min-1 to give an enzyme with two ADP at noncatalytic sites with a Kd of about 0.1 microM. Upon exposure to Mg2+ and ATP the vacant noncatalytic site binds an ATP rapidly and, as an ADP slowly dissociates, a second ATP binds. The binding correlates with an increase in the ATPase activity. In contrast the tight binding of [3H]GTP to noncatalytic sites gives an enzyme with no ATPase activity. The three noncatalytic sites differ in their binding properties. The noncatalytic site that remains vacant after the ADP-heat-activated CF1 is exposed to Mg2+ and ADP and that can bind ATP rapidly is designated as site A; the site that fills with ATP as ADP dissociates when this enzyme is exposed to Mg2+ and ATP is called site B, and the site to which ADP remains bound is called site C. Procedures are given for attaining CF1 with ADP at sites B and C, with GTP at sites A and/or B, and with ATP at sites A, B, and/or C, and catalytic activities of such preparations are measured. For example, little or no ATPase activity is found unless ATP is at site A, but ADP can remain at site C with no effect on ATPase. Maximal GTPase activity requires ATP at site A but about one-fifth of maximal GTPase is attained when GTP is at sites A and B and ATP at site C. Noncatalytic site occupancy can thus have profound effects on the ATPase and GTPase activities of CF1.  相似文献   

17.
The effect of aurovertin on the binding parameters of ADP and ATP to native F1 from beef heart mitochondria in the presence of EDTA has been explored. Three exchangeable sites per F1 were titrated by ADP and ATP in the absence or presence of aurovertin. Curvilinear Scatchard plots for the binding of both ADP and ATP were obtained in the absence of aurovertin, indicating one high affinity site (Kd for ADP = 0.6-0.8 microM; Kd for ATP = 0.3-0.5 microM) and two lower affinity sites (Kd for ADP = 8-10 microM; Kd for ATP = 7-10 microM). With a saturating concentration of aurovertin capable of filling the three beta subunits of F1, the curvilinearity of the Scatchard plots was decreased for ATP binding and abolished for ADP binding, indicating homogeneity of ADP binding sites in the F1-aurovertin complex (Kd for ADP = 2 microM). When only the high affinity aurovertin site was occupied, maximal enhancement of the fluorescence of the F1-aurovertin complex was attained with 1 mol of ADP bound per mol of F1 and maximal quenching for 1 mol of ATP bound per mol of F1. When the F1-aurovertin complex was incubated with [3H]ADP followed by [14C]ATP, full fluorescence quenching was attained when ATP had displaced the previously bound ADP. In the case of the isolated beta subunit, both ADP and ATP enhanced the fluorescence of the beta subunit-aurovertin complex. The Kd values for ADP and ATP in the presence of EDTA were 0.6 mM and 3.7 mM, respectively; MgCl2 decreased the Kd values to 0.1 mM for both ADP and ATP. It is postulated that native F1 possesses three equivalent interacting nucleotide binding sites and exists in two conformations which are in equilibrium and recognize either ATP (T conformation) or ADP (D conformation). The negative interactions between the nucleotide binding sites of F1 are strongest in the D conformation. Upon addition of aurovertin, the site-site cooperativity between the beta subunits of F1 is decreased or even abolished.  相似文献   

18.
Two kinds of ATP binding sites were found to exist on the ATPase molecule. One was the catalytic site (1 mol/mol phosphorylation site) and its apparent dissociation constant for ATP was about 1 microM. The other was the regulatory site(s) and its apparent dissociation constant for ATP was equal to or higher than about 0.2 mM. The affinities of both sites for AMPPNP were three times lower than those for ATP. The affinity of the ATPase for ATP was reduced by the addition of KCl, but unaffected by the addition of NaCl. As thermodynamically expected, the affinity of the Na+-binding sites for Na+ ions was almost completely unaffected by the addition of ATP, which markedly decreased that of the K+-binding sites for K+ and Rb+ ions. In the absence of KCl, Na+ ions were bound very rapidly to the Na+-binding sites [(1979) J. Biochem. 86, 509--523]. However, Na+ ions were bound very slowly to the enzyme preincubated with 50 microM KCl, and the Na+ binding was markedly accelerated by the addition of ATP or AMPPNP at concentrations much higher than several microM. On the other hand, in the presence of 50 microM KCl, 1 mol of ATP was bound to the catalytic site with the same dissociation constant as that in the absence of KCl, and another 1 mol of ATP bound with a dissociation constant of about 0.1 mM. Therefore, we concluded that the Na+ binding to the enzyme in a K+ form is markedly accelerated by the binding at ATP to the regulatory site.  相似文献   

19.
Y Dupont  G Brandolin  P V Vignais 《Biochemistry》1982,21(25):6343-6347
The ADP/ATP carrier protein was extracted and purified from beef heart mitochondria, and its binding parameters with respect to 3'-O-naphthoyladenosine 5'-triphosphate (N-ATP), a fluorescent nontransportable analogue of ATP, were studied. The binding of N-ATP to the isolated carrier protein was accompanied by a decrease in fluorescence. Conversely, the release of bound N-ATP upon addition of carboxyatractyloside (CATR) or ATP resulted in a fluorescence increase. The bound N-ATP that was released upon addition of an excess of CATR or ATP was referred to as specifically bound N-ATP, i.e., N-ATP bound to the nucleotide sites of the carrier protein. Two classes of binding sites for N-ATP could be identified; the number of high-affinity sites (Kd less than 10 nM) was equal to the number of low-affinity sites (Kd = 0.45 microM). CATR behaved apparently as a noncompetitive inhibitor of the binding of N-ATP. The amount of N-ATP released increased linearly with the amount of CATR added, indicating an extremely high affinity of the carrier protein for CATR. The number of CATR binding sites was equal to half the total number of N-ATP binding sites (high- and low-affinity sites); at saturating concentrations of N-ATP, the binding of 1 mol of CATR resulted in the release of 2 mol of bound N-ATP, one from the high-affinity site and the other from the low-affinity site, showing unambiguously that each CATR site is interacting with a pair of probably interdependent N-ATP sites. A clear competition between N-ATP and ATP for binding to the carrier protein was demonstrated. The Kd values of the high- and low-affinity sites for ATP were less than 50 nM and 5 microM, respectively. In the presence of high concentrations of ATP, the two classes of N-ATP binding sites became indistinguishable, suggesting interconversion. It is proposed that the asymmetry in affinity for N-ATP binding is induced by the binding step itself, the carrier protein exhibiting a negative cooperativity for N-ATP binding.  相似文献   

20.
Karger GA  Reid JD  Hunter CN 《Biochemistry》2001,40(31):9291-9299
Magnesium protoporphyrin chelatase catalyzes the insertion of a Mg(2+) ion into protoporphyrin IX, which can be considered as the first committed step of (bacterio)chlorophyll synthesis. In the present work, the Mg chelatase H subunits from both Synechocystis and Rhodobacter sphaeroides were studied because of the differing requirements of these organisms for modified cyclic tetrapyrroles. Deuteroporphyrin was shown to be a substrate for Mg chelatase. Analytical HPLC gel filtration was used to show that an H-deuteroporphyrin complex can be reconstituted by incubating the magnesium chelatase H subunit with a molar excess of deuteroporphyrin and that these complexes are monomers. The binding process occurs in the absence of Mg(2+) or ATP or the I or D subunits of Mg chelatase. The emission from Trp residues in the H subunit is partly quenched when deuteroporphyrin is bound. Quantitative analysis of Trp fluorescence quenching led to determination of the K(d) values for deuteroporphyrin binding to BchH from Rb. sphaeroides and ChlH from Synechocystis, which are 1.22 +/- 0.42 microM and 0.53 +/- 0.12 microM for ChlH and BchH, respectively. In the case of ChlH, but not BchH, the K(d) increased 4-fold in the presence of MgATP(2-). Red shifts in absorbance and excitation peaks were observed in the B band of the bound porphyrin in comparison with deuteroporphyrin in solution, as well as reduced yield and red shifts of up to 8 nm in fluorescence emission. These alterations are consistent with a slightly deformed nonplanar conformation of the bound porphyrin. Mg deuteroporphyrin, the product of the Mg chelation reaction, was shown to form a complex with either ChlH or BchH; in each case the K(d) for Mg deuteroporphyrin is similar to that for deuteroporphyrin. The implications of the H-Mg protoporphyrin interaction for the next enzyme in the chlorophyll biosynthetic pathway, Mg protoporphyrin methyltransferase, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号