首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation of a non-muscle myosin heavy chain gene from Acanthamoeba   总被引:6,自引:0,他引:6  
We have isolated a non-muscle myosin heavy chain gene from Acanthamoeba castellanii using as a heterologous probe a sarcomeric myosin heavy chain gene from Caenorhabditis elegans. The amoeba genomic clone has been tentatively identified as containing a myosin II heavy chain gene based on hybridization to a 5300-nucleotide RNA species, hybrid selection of a mRNA encoding a 185-kDa polypeptide, specific immunoprecipitation of this polypeptide with antiserum to myosin II, and an exact match between the DNA sequence and a carboxyl-terminal myosin II peptide previously sequenced by protein chemical methods (C?té, G.P., Robinson, E.A., Appella, E., and Korn, E. D. (1984) J. Biol. Chem. 259, 12781-12787). We also sequenced a region of the gene whose deduced amino acid sequence shows strong homology with that region of muscle myosins which is thought to be involved in nucleotide binding. These results indicate that the amoeba genomic clone contains at least 90% of the coding information for the 185-kDa heavy chain polypeptide and that the bulk of the gene contains very little intron DNA. Genomic blots of amoeba DNA probed with a portion of this myosin gene indicate the presence of additional highly related sequences within the amoeba genome.  相似文献   

2.
3.
The complete nucleotide sequence and exon/intron structure of the rat embryonic skeletal muscle myosin heavy chain (MHC) gene has been determined. This gene comprises 24 X 10(3) bases of DNA and is split into 41 exons. The exons encode a 6035 nucleotide (nt) long mRNA consisting of 90 nt of 5' untranslated, 5820 nt of protein coding and 125 nt of 3' untranslated sequence. The rat embryonic MHC polypeptide is encoded by exons 3 to 41 and contains 1939 amino acid residues with a calculated Mr of 223,900. Its amino acid sequence displays the structural features typical for all sarcomeric MHCs, i.e. an amino-terminal "globular" head region and a carboxy-terminal alpha-helical rod portion that shows the characteristics of a coiled coil with a superimposed 28-residue repeat pattern interrupted at only four positions by "skip" residues. The complex structure of the rat embryonic MHC gene and the conservation of intron locations in this and other MHC genes are indicative of a highly split ancestral sarcomeric MHC gene. Introns in the rat embryonic gene interrupt the coding sequence at the boundaries separating the proteolytic subfragments of the head, but not at the head/rod junction or between the 28-residue repeats present within the rod. Therefore, there is little evidence for exon shuffling and intron-dependent evolution by gene duplication as a mechanism for the generation of the ancestral MHC gene. Rather, intron insertion into a previously non-split ancestral MHC rod gene consisting of multiple tandemly arranged 28-residue-encoding repeats, or convergent evolution of an originally non-repetitive ancestral MHC rod gene must account for the observed structure of the rod-encoding portion of present-day MHC genes.  相似文献   

4.
5.
6.
The 1979 amino acid sequence of embryonic chicken gizzard smooth muscle myosin heavy chain (MHC) have been determined by cloning and sequencing its cDNA. Genomic Southern analysis and Northern analysis with the cDNA sequence show that gizzard MHC is encoded by a single-copy gene, and this gene is expressed in the gizzard and aorta. The encoded protein has a calculated Mr of 229 X 10(3), and can be divided into a long alpha-helical rod and a globular head. Only 32 to 33% of the amino acid residues in the rod and 48 to 49% in the head are conserved when compared with nematode or vertebrate sarcomeric MHC sequences. However, the seven residue hydrophobic periodicity, together with the 28 and 196 residue repeat of charge distribution previously described in nematode myosin rod, are all present in the gizzard myosin rod. Two of the trypsin-sensitive sites in gizzard light meromyosin have been mapped by partial peptide sequencing to 99 nm and 60 nm from the tip of the myosin tail, where these sites coincide with the two "hinges" for the 6 S/10 S transition. In the head sequence, several polypeptide segments, including the regions around the putative ATP-binding site and the reactive thiol groups, are highly conserved. These areas presumably reflect conserved structural elements important for the function of myosin. A multi-domain folding model of myosin head is proposed on the basis of the conserved sequences, information on the topography of myosin in the literature, and the predicted secondary structures. In this model, Mg2+ ATP is bound to a pocket between two opposing alpha/beta domains, while actin undergoes electrostatic interactions with lysine-rich surface loops on two other domains. The actin-myosin interactions are thought to be modulated through relative movements of the domains induced by the binding of ATP.  相似文献   

7.
The nucleotide sequence of a rat myosin light chain 2 gene   总被引:24,自引:4,他引:20       下载免费PDF全文
A rat myosin light chain 2 gene was characterized by nucleotide sequence and S1 mapping analyses. It contains seven exons separated by six introns. The corresponding mRNA is predicted to be 654 nucleotides long (excluding polyA sequences), with 5'-nontranslated, coding, and 3'-nontranslated lengths of 56, 510, and 88 nucleotides, respectively. The predicted amino acid sequence is identical to that from rabbit except that the rat sequence lacks one of two Gly residues located at positions 12 and 13 in the rabbit sequence. From the nucleotide sequence, nascent rat myosin light chain 2 is predicted to have Met Ala preceding Pro at the N-terminal end.  相似文献   

8.
In previous work from this laboratory, a partially purified protein kinase from the soil amoeba Acanthamoeba castellanii was shown to phosphorylate the heavy chain of the two single-headed Acanthamoeba myosin isoenzymes, myosin IA and IB, resulting in a 10- to 20-fold increase in their actin-activated Mg2+-ATPase activities (Maruta, H., and Korn, E.D. (1977) J. Biol. Chem. 252, 8329-8332). A myosin I heavy chain kinase has now been purified to near homogeneity from Acanthamoeba by chromatography on DE-52 cellulose, phosphocellulose, and Procion red dye, followed by chromatography on histone-Sepharose. Myosin I heavy chain kinase contains a single polypeptide of 107,000 Da by electrophoretic analysis. Molecular sieve chromatography yields a Stokes radius of 4.1 nm, consistent with a molecular weight of 107,000 for a native protein with a frictional ratio of approximately 1.3:1. The kinase catalyzes the incorporation of 0.9 to 1.0 mol of phosphate into the heavy chain of both myosins IA and IB. Phosphoserine has been shown to be the phosphorylated amino acid in myosin IB. The kinase has highest specific activity toward myosin IA and IB, about 3-4 mumol of phosphate incorporated/min/mg (30 degrees C) at concentrations of myosin I that are well below saturating levels. The kinase also phosphorylates histone 2A, isolated smooth muscle light chains, and, to a very small extent, casein, but has no activity toward phosvitin or myosin II, a third Acanthamoeba myosin isoenzyme with a very different structure from myosin IA and IB. Myosin I heavy chain kinase requires Mg2+ but is not dependent on Ca2+, Ca2+/calmodulin, or cAMP for activity. The kinase undergoes an apparent autophosphorylation.  相似文献   

9.
10.
We have determined the complete nucleotides sequence (2168 bases) of the immunoglobulin mu gene cloned from newborn mouse DNA. The cloned 13kb fragment contained the entire constant region gene sequence that is interrupted by three intervening sequences at the junction of domains as previously shown in the gamma 1, gamma 2 b and alpha genes. The amino acid sequence predicted by the nucleotide sequence agrees with that of the mu chain secreted by a myeloma MOPC104E except for 8 residues out of 448 residues. The homologous domains of the mu, gamma 1 and gamma 2b genes are more similar to each other than the different domains of the mu genes are. The result implicates that the class of the immunoglobulin heavy chain genes diverged after the heavy chain genes established the multi-domain structure. The short intervening sequences of the mu and gamma genes are more conserved than the coding sequences except for the COOH-terminal domains. The results implicate that the nucleotide sequence of the intervening sequence is under selective pressure, possibly to maintain a secondary structure of the nuclear RNA to be spliced.  相似文献   

11.
Rat immunoglobulin δ heavy-chain mRNA has been isolated. RNA blot analysis revealed that this mRNA with a length of 1.8 kb encodes for the secreted form of IgD. The corresponding cDNA was cloned in plasmid pBR322 and its sequence was determined. The hybrid plasmid contains a 775-bp insert comprising a partial Cδ1 sequence and complete CδH, Cδ3, CδDC and 3' untranslated sequences. Rat and mouse IgD amino acid sequences show striking homology in Cδ3 and CδDC regions.  相似文献   

12.
13.
14.
15.
We have constructed a library of Balb/c mouse embryo DNA in the vector Charon 4A. The library was searched for sequences homologous to the VH region of a cloned cDNA of the UPC10 heavy chain mRNA. In this paper, we describe the structure and the partial nucleotide sequence of one of such clones (VH441). The nucleotide sequence of this germ-line gene indicates that it encodes amino-acids 1-98 of the X44 and J601 galactan-binding VH regions, but that it differs from the UPC10 VH segment by four single base changes. The VH gene appears to contain a 101 bases long intervening sequence within a precursor sequence identical to the precursor sequence of UPC10. The 3' non coding sequence of the V gene contains the two conserved sequences found in embryonic V DNA segments, CACAGTG and ACATGAACC, separated by 23 nucleotides and a sequence CACTGTG separated by 33 nucleotides from the first heptamer.  相似文献   

16.
Evolution of sarcomeric myosin heavy chain genes: evidence from fish   总被引:1,自引:0,他引:1  
Myosin heavy chain (MYH) is a major structural protein, integral to the function of sarcomeric muscles. We investigated both exon-intron organization and amino acid sequence of sarcomeric MYH genes to infer their evolutionary history in vertebrates. Our results were consistent with the hypothesis that a multigene family encoded MYH proteins in the ancestral chordate, one gene ancestral to human MYH16 and its homologues and another ancestral to all other vertebrate sarcomeric MYH genes. We identified teleost homologues of mammalian skeletal and cardiac MYH genes, indicating that the ancestors of those genes were present before the divergence of actinopterygians and sarcopterygians. Indeed, the ancestral skeletal genes probably duplicated at least once before the divergence of teleosts and tetrapods. Fish homologues of mammalian skeletal MYH are expressed in skeletal tissue and homologues of mammalian cardiac genes are expressed in the heart but, unlike mammals, there is overlap between these expression domains. Our analyses inferred two other ancestral vertebrate MYH genes, giving rise to human MYH14 and MYH15 and their homologues. Relative to the skeletal and cardiac genes, MYH14 and MYH15 homologues are characterized by evolution of intron position, differences in evolutionary rate between the functionally differentiated head and rod of the myosin protein, and possible evolution of function among vertebrate classes. Tandem duplication and gene conversion appear to have played major roles in the evolution of at least cardiac and skeletal MYH genes in fish. One outcome of this high level of concerted evolution is that different fish taxa have different suites of MYH genes, i.e., true orthologs do not exist.  相似文献   

17.
The actin-activated Mg2+-ATPase activity of myosin II from the soil amoeba Acanthamoeba castellanii is regulated by phosphorylation of 3 serine residues on the myosin II heavy chain. Partial chymotryptic digestion of 32P-labeled myosin II cleaves from the tail end of the myosin II heavy chain a small peptide which contains all three phosphorylation sites. During purification the phosphorylated peptide is resolved into several different species as a result of heterogeneity both in phosphate content and in size (probably due to chymotryptic cleavage at the carboxyl terminus). However, all forms of the peptide have an identical amino terminus. The sequence of the first 58 residues of the peptide is: N-S-A-L-E-S-D-K-Q-I10-L-E-D-E-I-G-D-L-H- E20-K-N-K-Q-L-Q-A-K-I-A30-Q-L-Q-D-E-I-D-G-T- P40-S-S-R-G-G-S-T-R-G-A50-S-A-R-G-A-S-V-R. The phosphorylated serines are at positions 46, 51, and 56. The first 36 residues of the sequence display a repeating 3-4-3-4 pattern of hydrophobic residues suggesting that this section of the peptide forms an alpha-helical coiled-coil structure. A -Gly-Thr-Pro sequence at residues 38-40 disrupts the alpha-helix and, at the same point, the repeating pattern of non-polar residues is lost. It is likely that the residues extending from Gly-38 to the end of the myosin II tail, which include the 3 phosphorylatable serines, form a randomly coiled or small globular structure. This is the first report of the sequence around the regulatory phosphorylation sites on any myosin heavy chain.  相似文献   

18.
19.
The complete nucleotide sequence of murine beta-glucuronidase (GUS) mRNA has been compiled from three overlapping cloned cDNAs and a single GUS-specific genomic clone. The sequence is composed of 2455 nucleotides, exclusive of the poly(A) tail. The 5' and 3' untranslated regions contain 12 and 499 bases, respectively, with the open reading frame encoding a polypeptide of 648 amino acids (74.2 kDa), including a 22 amino acid signal sequence. The nucleotide and deduced amino acid sequences of murine GUS are compared to those published for rat and human GUS and the results are presented. Murine GUS also shares amino acid sequence identity with Escherichia coli GUS and beta-galactosidase. The complete sequences of murine GUS mRNA and its deduced polypeptide provide a basis from which to study the mechanisms responsible for the well-characterized variation in GUS expression among inbred mouse strains.  相似文献   

20.
Arginase (EC 3.5.3.1) catalyzes the last step of urea synthesis in the liver of ureotelic animals. The nucleotide sequence of rat liver arginase cDNA, which was isolated previously (Kawamoto, S., Amaya, Y., Oda, T., Kuzumi, T., Saheki, T., Kimura, S., and Mori, M. (1986) Biochem. Biophys. Res. Commun. 136, 955-961) was determined. An open reading frame was identified and was found to encode a polypeptide of 323 amino acid residues with a predicted molecular weight of 34,925. The cDNA included 26 base pairs of 5'-untranslated sequence and 403 base pairs of 3'-untranslated sequence, including 12 base pairs of poly(A) tract. The NH2-terminal amino acid sequence, and the sequences of two internal peptide fragments, determined by amino acid sequencing, were identical to the sequences predicted from the cDNA. Comparison of the deduced amino acid sequence of the rat liver arginase with that of the yeast enzyme revealed a 40% homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号