首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ADPglucose pyrophosphorylase from potato (Solanum tuberosum L.) tubers has been purified by hydrophobic chromatography on 3 aminopropyl-sepharose (Seph-C3-NH2). The purified preparation showed two closely associated protein-staining bands that coincided with enzyme activity stains. Only one major protein staining band was observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The subunit molecular weight was determined to be 50,000. The molecular weight of the native enzyme was determined to be 200,000. The enzyme appeared to be a tetramer consisting of subunits of the same molecular weight. The subunit molecular weight of the enzyme is compared with previously reported subunit molecular weights of ADPglucose pyrophosphorylases from spinach leaf, maize endosperm, and various bacteria. ADPglucose synthesis from ATP and glucose 1-P is almost completely dependent on the presence of 3-P-glycerate and is inhibited by inorganic phosphate. The kinetic constants for the substrates and Mg2+ are reported. The enzyme Vmax is stimulated about 1.5- to 3-fold by 3 millimolar DTT. The significance of the activation by 3-P-glycerate and inhibition by inorganic phosphate ADPglucose synthesis catalyzed by the potato tuber enzyme is discussed.  相似文献   

2.
Pyrophosphorylytic kinetic constants (S0.5, Vmax) of partially purified UDP-glucose- and ADP-glucose pyrophosphorylases from potato tubers were determined in the presence of various intermediary metabolites. The S0.5 of UDP-glucose pyrophosphorylase for UDP-glucose (0.17 millimolar) or pyrophosphate (0.30 millimolar) and the Vmax were not influenced by high concentrations (2 millimolar) of these substances. The most efficient activator of ADP-glucose pyrophosphorylase was 3-P-glycerate (A0.5 = 4.5 × 10−6 molar). The S0.5 for ADP-glucose and pyrophosphate was increased 3.5-fold (0.83 to 0.24 millimolar) and 1.8-fold (0.18 to 0.10 millimolar), respectively, with 0.1 millimolar 3-P-glycerate while the Vmax was increased nearly 4-fold. The magnitude of 3-P-glycerate stimulation was dependent upon the integrity of key sulfhydryl groups (−SH) and pH. Oxidation or blockage of −SH groups resulted in a marked reduction of enzyme activity. Stimulations of 3.1-, 2.9-, 4.8-, and 9.5-fold were observed at pH 7.5, 8.0, 8.5, and 9.0, respectively, in the presence of 3-P-glycerate (2 millimolar). The most potent inhibitor of ADP-glucose pyrophosphorylase was orthophosphate (I0.5 = 8.8 × 10−5. molar). This inhibition was reversed with 3-P-glycerate (1.2 × 10−4 molar), resulting in an increased I0.5 value of 1.5 × 10−3 molar. Likewise, orthophosphate (7.5 × 10−4 molar) caused a decrease in the activation efficiency of 3-P-glycerate (A0.5 from 4.5 × 10−6 molar to 6.7 × 10−5 molar). The significance of 3-P-glycerate activation and orthophosphate inhibition in the regulation of α-glucan biosynthesis in Solanum tuberosum is discussed.  相似文献   

3.
The glycolytic enzyme triose phosphate isomerase from Schistosoma mansoni is a potential target for drugs and vaccines. Molecular modelling of the enzyme predicted that a Ser-Ala-Asp motif which is believed to be a helminth-specific epitope is exposed. The enzyme is dimeric (as judged by gel filtration and cross-linking), resistant to proteolysis and highly stable to thermal denaturation (melting temperature of 82.0 °C). The steady-state kinetic parameters are high (Km for dihydroxyacetone phosphate is 0.51 mM; Km for glyceraldehyde 3-phosphate is 1.1 mM; kcat for dihydroxyacetone phosphate is 7800 s−1 and kcat for glyceraldehyde 3-phosphate is 6.9 s−1).  相似文献   

4.
A pot experiment was carried out to explore the role of glycinebetaine (GB) as foliar spray foliar on two pea (Pisum sativum L.) varieties (Pea 09 and Meteor Fsd) under saline and non-saline conditions. Thirty-two-day-old plants were subjected to two levels 0 and 150 mM of NaCl stress. Salt treatment was applied in full strength Hoagland’s nutrient solution. Three levels 0, 5 and 10 mM of GB were applied as foliar treatment on 34-day-old pea plants. After 2 weeks of foliar treatment with GB data for various growth and physiochemical attributes were recorded. Rooting-medium applied salt (150 mM NaCl) stress decreased growth, photosynthesis, chlorophyll, chlorophyll fluorescence and soluble protein contents, while increasing the activities of enzymatic (POD and CAT) and non-enzymatic (ascorbic acid and total phenolics) antioxidant enzymes. Foliar application of GB decreased root and shoot Na+ under saline conditions, while increasing shoot dry matter, root length, root fresh weight, stomatal conductance (g s), contents of seed ascorbic acid, leaf phenolics, and root and shoot Ca2+ contents. Of three GB (0, 5, 10 mM) levels, 10 mM proved to be more effective in mitigating the adverse effects of salinity stress. Overall, variety Pea 09 showed better performance in comparison to those of var. Meteor Fsd under both normal and salinity stress conditions. GB-induced modulation of seed ascorbic acid, leaf phenolics, g s, and root Ca2+ values might have contributed to the increased plant biomass, reduction of oxidative stress, increased osmotic adjustment and better photosynthetic performance of pea plants under salt stress.  相似文献   

5.
Hexokinase II of Pea Seeds   总被引:4,自引:4,他引:0       下载免费PDF全文
A second hexokinase (EC 2.7.1.1) was obtained from pea seed (Pisum sativum L. var. Progress No. 9) extracts. The enzyme, termed hexokinase II, had a high affinity (Km, 48 micromolar) for glucose and a relatively low affinity (Km, 10 millimolar) for fructose. The Km for MgATP was 86 micromolar. Mg2+ was required for activity, but excess Mg2+ was inhibitory. MgADP inhibited hexokinase II. The addition of salts of monovalent cations increased hexokinase II activity. Al3+ was a strong inhibitor of the enzyme at pH 6.6 but not at the optimum pH (8.2). Citrate and 3-phosphoglycerate activated pea seed hexokinase II at pH 6.6, probably by coordinating with aluminum present as a contaminant in commercial ATP. The properties of hexokinase II are compared with those of the other three hexose kinases obtained from pea seed extracts. The possible role of these enzymes in plant carbohydrate metabolism is discussed.  相似文献   

6.
The phosphate translocator protein of C3 and C4 mesophyll chloroplast envelopes was specifically labeled using the anion exchange inhibitor, 1,2-ditritio-1,2-(2,2′ -disulfo-4,4′ -diisothiocyano) diphenylethane ([3H]2-DIDS). Intact mesophyll chloroplasts were isolated from the C3 plants, Spinacia oleracea L. (spinach) and Pisum sativum L. (pea), and the C4 plant, Zea mays L. (corn). Chloroplasts were incubated with 5 to 50 μm [3H]2-DIDS and, in addition, pea chloroplasts were also incubated with pyridoxal phosphate/tritiated sodium borohydride. The chloroplasts were washed, the envelopes isolated and solubilized. Following sodium dodecyl sulfate polyacrylamide gel electrophoresis, label from bound [3H]2-DIDS was detected only in the 28- to 30-kilodalton protein (proposed C3 phosphate translocator) for both C3 and C4 chloroplasts, as demonstrated by fluorography. In contrast, when pyridoxal phosphate/tritiated sodium borohydride was used to label pea chloroplasts, radioactivity was detected in several other bands in addition to the 29-kilodalton polypeptide. These findings suggest that DIDS is a much more specific inhibitor than reagents previously employed to study the phosphate translocator and could be used to isolate and characterize the differences in the C3 and C4 phosphate translocator protein(s).  相似文献   

7.
Three pea (Pisum sativum) leaf chloroplast enzymes—triose phosphate isomerase, glyceric acid 3-phosphate kinase, and fructose 1,6-diphosphate aldolase—have been separated from the corresponding cytoplasmic enzymes by isoelectric focusing. These three enzymes of the reductive pentose phosphate cycle are therefore distinct proteins, not identical with the analogous enzymes of the Embden-Meyerhof-Parnas pathway.  相似文献   

8.
Data regarding the interrelation of nitric oxide (NO) content in roots of 3-day-old etiolated pea seedlings and their growth under different concentrations of N-containing compounds were obtained. The concentration of exogenous compounds (sodium nitroprusside SNP, KNO3, NaNO2, L-arginine) rendering an inhibiting effect on the growth of roots were established, and the NO content in roots was determined at these concentration. It was shown that the inhibition of growth and highest NO content in the roots was determined with SNP (4 mM) and NaNO2 (2 mM) during 24 h exposition of seedlings. This dependence was not established in combinations with KNO3 (20 mM) and L-arginine (4 mM). We established that a NO scavenger, hemoglobin (4 μM), fully or partially removed the toxic effect of SNP, nitrate, and nitrite on growth. The effect of NO on the growth and the participation of N-containing compounds in generation of NO in roots of pea seedlings is discussed.  相似文献   

9.
Induction of mutation has been used to create additional genetic variability in grass pea (Lathyrus sativus L.). During the ongoing investigations on different induced-morphological mutants, the author detected three types of dwarf mutants in grass pea. One mutant, designated as dwf1 type was earlier identified in colchicine-induced C2 generation of grass pea variety BioR-231 while the other two, designated as dwf2 and dwf3 were isolated in 250 Gy and 300 Gy gamma ray irradiated M2 progeny of variety ‘BioR-231’ and ‘Hooghly Local’, respectively. As compared to their parental varieties (controls), all the three mutants manifested stunted, erect and determinate stem, early maturity and tolerance to pod shattering habit. The mutants differed from each other, as well as with controls, in number of primary branches, nature of stipules and internodes, length of peduncle, leaflet and seed coat colour, seed yield and seed neurotoxin content. The three dwarf mutants were monogenically recessive and bred true in successive generations. F2 segregation pattern obtained from the crosses involving the three mutants indicated that dwarf mutation in grass pea was controlled by two independent non-allelic genes, assigned as df1 (for dwf1 type), df2 (for dwf2 type) and df3 (for dwf3 type), with the df1 locus being multiple allelic. Primary trisomic analyses revealed the presence of df1/df2 locus on the extra chromosome of trisomic type I, whereas df3 was located on the extra chromosome of type III. Linkage studies involving five other phenotypic markers suggested linked association of df1/df2 locus with lfc (leaflet colour) and wgn (winged internode) and df3 locus with cbl (seed coat colour). Both the loci; however, assorted independently with flower colour and stipule character. The dwarf types can be utilized as valuable tools for further cytogenetic research and breeding of grass pea.  相似文献   

10.
About 68–86% of the cysteine synthase activity in leaf tissue of white clover (Trifolium repens) and peas (Pisum sativum cultivar Massey Gem) was associated with chloroplasts. The enzymes from white clover and peas were purified ca 66 and 12-fold respectively. For clover, the Km values determined by calorimetric and S2? ion electrode methods were: S2? 0.51 and 0.13 mM; O-acetylserine (OAS), 3.5 and 2.O mM respectively. The analogous values for the pea enzyme were: S2?, 0.24 and 0.06 mM; OAS, 3.1 and 0.24 mM. Both enzymes were inhibited by cystathionine and cysteine. Pretreatment with cysteine inactivated the enzyme, but addition of pyridoxal phosphate caused partial reactivation. Isolated pea chloroplasts (70–75 % intact) catalysed OAS-dependent assimilation of sulphide at a mean rate of 88 μmol/mg Chl/hr. About 85 % of the OAS-dependent sulphide assimilated was recovered as cysteine. The rates were unaffected by light and 2 μM DCMU. Sonicating the chloroplasts enhanced the rate by 1.3–2 fold. Cysteine synthase activity was associated with the chloroplast stroma. Similar results were obtained for clover chloroplasts except that both the intactness and the rates were lower.  相似文献   

11.
Isolation of intact plastids from a range of plant tissues   总被引:27,自引:24,他引:3       下载免费PDF全文
A technique for the isolation of intact plastids from spinach (Spinacia oleracea) and pea (Pisum sativum) leaves, pea roots and castor bean (Ricinus communis) endosperm is described. This technique involves brief centrifugation of whole homogenates on density gradients. Intact plastids were located in the gradient by assaying for triose phosphate isomerase activity. Contamination of the plastic peak with mitochondria and microbodies was estimated by measurement of cytochrome oxidase and catalase, respectively. For three of the four tissues the level of contamination of the plastids by these organelles was 2% or less. The sedimentation behavior of microbodies from different tissues is discussed.  相似文献   

12.
ADP-glucose pyrophosphorylase catalyzes the regulated step of starch bioynthesis in mesophyll chloroplasts. This enzyme is activated by a high ratio of the concentrations of 3-P-glycerate to inorganic phosphate (Pi) in light. In contrast, starch in guard cell chloroplasts is degraded when stomata open, which usually occurs in light. We have investigated the biochemical causes for this contrasting phenomenon.

Vicia faba L. leaflets were sampled in darkness and after various periods of illumination. The samples were quick-frozen and freeze-dried. Guard cells and other cells were dissected out, weighed, and assayed for ADP-glucose pyrophosphorylase activity, 3-P-glycerate, and Pi. In the pyrophosphorolytic direction, ADP-glucose pyrophosphorylase specific activity in guard cells was 2.7 moles per kilogram protein per hour, which was comparable to the values obtained for palisade and spongy cells. The specific activity in epidermal cells was 4-fold lower. Under our assay conditions, the guard cell enzyme activity was 5-fold higher in the presence of 3-P-glycerate and 5-fold lower with Pi (i.e. similar to the results obtained with extracts of fresh leaflet). During three minutes of illumination, 3-P-glycerate concentration in palisade cells increased 2.5-fold to 10 millimoles per kilogram dry mass. The concentration of 3-P-glycerate in guard cells was 20-fold lower and unaffected by illumination. The concentration of Pi was approximately 17 millimoles per kilogram dry mass in palisade cells, but was 10-fold higher in guard cells. These overall cellular Pi concentrations were unaffected by illumination. We conclude that starch biosynthesis in guard cells is not activated by light because of the low and constant 3-P-glycerate concentration there. We interpret this last to be a consequence of the absence of the photosynthetic carbon reduction pathway in chloroplasts of these cells.

  相似文献   

13.
A simplified and defined system was developed to study in vitro calcium phosphate deposition by isolated matrix vesicles from rabbit growth plate cartilage, and to examine the relationship between vesicle phosphatase and calcium deposition. Samples of suspended vesicles containing 25 μg of protein, were incubated for 2 h in a 45Ca-labelled solution with 2.2 mM Ca2+, 1.6 mM PO43? and 1 mM ATP at pH 7.6. Calcium deposition was related to the amount of PO4 hydrolysed by matrix vesicle phosphatases from ATP and other phosphate esters. Ca2+ or Mg2+ was found to stimulate matrix vesicle. ATPase, but the hydrolysis of phosphoenolpyruvate, glucose 1-phosphate, β-glycerol phosphate and AMP was independent of either cation. All of the above substrates supported calcium deposition. 1 mM ATP was more effective than 5 mM in supporting calcium deposition, indicating inhibition of mineralization at higher ATP concentrations. Our results suggest that, in addition to concentrating calcium, veiscles provide phosphate from ATP for mineral formation and at the same time remove the inhibitory effect of ATP upon mineral deposition.  相似文献   

14.
We have integrated and coordinately expressed in Saccharomyces cerevisiae a xylose isomerase and cellobiose phosphorylase from Ruminococcus flavefaciens that enables fermentation of glucose, xylose, and cellobiose under completely anaerobic conditions. The native xylose isomerase was active in cell-free extracts from yeast transformants containing a single integrated copy of the gene. We improved the activity of the enzyme and its affinity for xylose by modifications to the 5′-end of the gene, site-directed mutagenesis, and codon optimization. The improved enzyme, designated RfCO*, demonstrated a 4.8-fold increase in activity compared to the native xylose isomerase, with a Km for xylose of 66.7?mM and a specific activity of 1.41?μmol/min/mg. In comparison, the native xylose isomerase was found to have a Km for xylose of 117.1?mM and a specific activity of 0.29?μmol/min/mg. The coordinate over-expression of RfCO* along with cellobiose phosphorylase, cellobiose transporters, the endogenous genes GAL2 and XKS1, and disruption of the native PHO13 and GRE3 genes allowed the fermentation of glucose, xylose, and cellobiose under completely anaerobic conditions. Interestingly, this strain was unable to utilize xylose or cellobiose as a sole carbon source for growth under anaerobic conditions, thus minimizing yield loss to biomass formation and maximizing ethanol yield during their fermentation.  相似文献   

15.
6-Phosphofructo-2-kinase (ATP: D-fructose-6-phosphate-2-phosphotransferase) and D-fructose-2,6-bisphosphatase activities have been found in extracts prepared from etiolated mung bean seedlings. The activity of 6-phosphofructo-2-kinase exhibits a sigmoidal shape in response to changes in concentrations of both substrates, D-fructose 6-phosphate and ATP (S0.5 values of 1.8 and 1.2 mM, respectively). Inorganic orthophosphate (Pi) has a strong stimulating effect on the 2-kinase activity (A0.5 at about 2 mM), moderately increasing the Vmax and modifying the response into hyperbolic curves with Km values of 0.4 and 0.2 mM for fructose 6-phosphate and ATP, respectively. 3-Phosphoglycerate (I0.5 about 0.15 mM) partially inhibited the kinase activity by counteracting the Pi activation. In contrast, the activity of D-fructose-2,6-bisphosphatase (Km 0.38 mM) is strongly inhibited by Pi (I0.5 0.8 mM) lowering its affinity to fructose-2,6-P2 (Km 1.4 mM). 3-Phosphoglycerate activites the enzyme (A0.5 at about 0.3 mM) without causing a significant change in its Km for fructose-2,6-P2. The activities of both of these enzymes in relationship to the metabolic role of D-fructose 2,6-bisphosphate in the germinating seed is discussed.  相似文献   

16.
Uptake of phosphate ions by 1 mm segments of isolated maize root cortex layers was studied. Cortex segments (from roots of 8 days old maize plants) absorb phosphate ions from 1 mM KH2PO4 in 0.2 mM CaSCO4 at the average rate of 34.3 ±3.2 μg Pi g?1 (fr. m.) h?1,i.e. 0.35± 0.02 μmol Pi g?1 (fr. m.) h?1. Phosphate uptake considerably increases after a certain period of “augmentation”,i.e. washing in aerated 0.2 mM CaSO4. This increase is completely blocked by the presence of 10 μg ml?1 cycloheximide. The relation of uptake rate to phosphate concentration in the medium was shown to have 3 phases in the concentration range of 0.02 - 40 mM. Transition points were found between 0.8–1 mM and 10–20 mM. Following Km and Vmax values were found: Km[mM] : 0.37 - 3.82 - 27.67 Vmax[μg Pi g?1 (fr. m.) h?1] : 3.33 - 39.40 - 66.67 We have found no sharp pH optimum for phosphate uptake. It proceeds at almost constant rate till pH 6.0 and then the uptake rate drops with increasing pH. At low phosphate concentrations (1 mM) the lowest uptake rate was found at 5 and 13 °C, while the uptake is higher at 5 °C than at 13 °C at phosphate concentrations higher than 1 mM. At these concentrations uptake rate at 35 °C is lower than at 25 °C. Phosphate uptake considerably decreased in anaerobic conditions. DNP and iodoacetate (0.1 mM) completely blocked phosphate uptake from 1 mM KH2PO4, while uptake from 5 and 10 mM KH2PO4 was left unaffected by these substances. The inhibitors of active - SH groups NEM and PCMB inhibited phosphate uptake: 10?3 M NEM by 81.6%, 104 M NEM by 42% and 10?4 M PCMB by 42%.  相似文献   

17.
Triose phosphate isomerase (TPI) catalyses the interconversion of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, a reaction in the glycolytic pathway. TPI from the common liver fluke, Fasciola hepatica, has been cloned, sequenced and recombinantly expressed in Escherichia coli. The protein has a monomeric molecular mass of approximately 28 kDa. Crosslinking and gel filtration experiments demonstrated that the enzyme exists predominantly as a dimer in solution. F. hepatica TPI is predicted to have a β-barrel structure and key active site residues (Lys-14, His-95 and Glu-165) are conserved. The enzyme shows remarkable stability to both proteolytic degradation and thermal denaturation. The melting temperature, estimated by thermal scanning fluorimetry, was 67 °C and this temperature was increased in the presence of either dihydroxyacetone phosphate or glyceraldehyde 3-phosphate. Kinetic studies showed that F. hepatica TPI demonstrates Michaelis–Menten kinetics in both directions, with Km values for dihydroxyacetone phosphate and glyceraldehyde 3-phosphate of 2.3 mM and 0.66 mM respectively. Turnover numbers were estimated at 25,000 s−1 for the conversion of dihydroxyacetone phosphate and 1900 s−1 for the conversion of glyceraldehyde 3-phosphate. Phosphoenolpyruvate acts as a weak inhibitor of the enzyme. F. hepatica TPI has many features in common with mammalian TPI enzymes (e.g. β-barrel structure, homodimeric nature, high stability and rapid kinetic turnover). Nevertheless, recent successful identification of specific inhibitors of TPI from other parasites, suggests that small differences in structure and biochemical properties could be exploited in the development of novel, species-specific inhibitors.  相似文献   

18.
Cations were generally ineffective in stimulating succinate transport in a succinate dehydrogenase mutant of Bacillus subtilis unless accompanied by polyvalent anions; phosphate and sulfate being particularly active. The Km values for the phosphate or sulfate requirement were approx. 3 mM.Biphasic kinetics were characteristic of both the succinate (Km values 0.1 and 1 mM), and inorganic phosphate (Km values 0.1 and 3 mM) transport system(s). The phosphate transport system(s) was repressed by high inorganic phosphate and a coordinate increase in the transport of phosphate, arsenate, and phosphate-stimulated succinate transport accompanied growth in low phosphate media.A class of arsenate resistant mutants were simultaneously defective in the transport of arsenate, phosphate and succinate when cells were repressed for phosphate transport, however, the transport of these ions was regained in these mutants when grown in low phosphate media. Organic phosphate esters did not stimulate succinate transport in arsenate resistant mutants but were effective after growth in low phosphate media. Growth under phosphate limitation permitted the simultaneous regain of both phosphate and sulfate dependent succinate transport activities whereas sulfate limitation alone was ineffective.Succinate was not transported by an anion exchange diffusion mechanism since phosphate efflux was low or absent during succinate transport.The transport of C4-dicarboxylates in B. subtilis is strongly stimulated by intracellular polyvalent anions. The absence of an anion permeability mechanism precludes succinate transport but partial escape from this restriction is mediated by the derepression of a phosphate transport system.  相似文献   

19.
Radioactive gibberellin a(5) and its metabolism in dwarf peas   总被引:5,自引:5,他引:0       下载免费PDF全文
Radioactive gibberellin A5 (3H-GA5) was synthesized from gibberellic acid. When it was applied to dwarf peas grown in the dark, an average of 3% was converted to another acid gibberellin within 48 hours. The biological activity of the metabolite did not account for the response to applied GA5. GA5 is therefore assumed to be biologically active per se.3H-GA5 did not appear to form a stable complex with a macromolecule in pea shoots. When injected into dwarf pea pods, 3H-GA5 was readily metabolized by maturing seed to more water-soluble substances and to two other acidic compounds. This metabolism continued even throughout germination of the seed without reconversion of the metabolites to GA5. It is concluded that “bound” GA5 plays no part in the germination of dwarf pea seeds.  相似文献   

20.
Different carbon and nitrogen sources had little effect on the level of dihydroxyacetone kinase formed in the cells of Gluconobacter suboxydans. The enzyme was purified to homogeneity from cell-free extract of the organism by ammonium sulfate fractionation and chromatographies on DEAE-cellulose, hydroxyapatite and Sephadex G-200 (60-fold purification, 6% yield). Its molecular weight was 260,000; it was stabilized by addition of ATP, dithiothreitol, 2-mercaptoethanol or EDTA, and it reacted optimally at pH 6.5. d-Glyceraldehyde was equally as effective as DHA as a phosphate acceptor (Km: 0.30 mM each). UTP showed 15% of the reactivity of ATP as a phosphate donor. Km values for ATP were 0.33 mM in phosphorylation of dihydroxyacetone and 0.39 mM with d-glyceraldehyde. The enzyme activity was dependent on Mg2+ but not on Mn2+. The reaction with dihydroxyacetone as an acceptor was inhibited by d-glyceraldehyde. The inhibition was competitive with respect to dihydroxyacetone 3Ki=0.09 mM) and noncompetitive with respective to ATP (Ki=5.7 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号