首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee BI  Kim KH  Park SJ  Eom SH  Song HK  Suh SW 《The EMBO journal》2004,23(10):2029-2038
RecR, together with RecF and RecO, facilitates RecA loading in the RecF pathway of homologous recombinational DNA repair in procaryotes. The human Rad52 protein is a functional counterpart of RecFOR. We present here the crystal structure of RecR from Deinococcus radiodurans (DR RecR). A monomer of DR RecR has a two-domain structure: the N-terminal domain with a helix-hairpin-helix (HhH) motif and the C-terminal domain with a Cys4 zinc-finger motif, a Toprim domain and a Walker B motif. Four such monomers form a ring-shaped tetramer of 222 symmetry with a central hole of 30-35 angstroms diameter. In the crystal, two tetramers are concatenated, implying that the RecR tetramer is capable of opening and closing. We also show that DR RecR binds to both dsDNA and ssDNA, and that its HhH motif is essential for DNA binding.  相似文献   

2.
The Escherichia coli 3-methyladenine DNA glycosylase I (TAG) is a DNA repair enzyme that excises 3-methyladenine in DNA and is the smallest member of the helix-hairpin-helix (HhH) superfamily of DNA glycosylases. Despite many studies over the last 25 years, there has been no suggestion that TAG was a metalloprotein. However, here we establish by heteronuclear NMR and other spectroscopic methods that TAG binds 1 eq of Zn2+ extremely tightly. A family of refined NMR structures shows that 4 conserved residues contributed from the amino- and carboxyl-terminal regions of TAG (Cys4, His17, His175, and Cys179) form a Zn2+ binding site. The Zn2+ ion serves to tether the otherwise unstructured amino- and carboxyl-terminal regions of TAG. We propose that this unexpected "zinc snap" motif in the TAG family (CX(12-17)HX(approximately 150)HX(3)C) serves to stabilize the HhH domain thereby mimicking the functional role of protein-protein interactions in larger HhH superfamily members.  相似文献   

3.
The 1.85 A crystal structure of endonuclease III, combined with mutational analysis, suggests the structural basis for the DNA binding and catalytic activity of the enzyme. Helix-hairpin-helix (HhH) and [4Fe-4S] cluster loop (FCL) motifs, which we have named for their secondary structure, bracket the cleft separating the two alpha-helical domains of the enzyme. These two novel DNA binding motifs and the solvent-filled pocket in the cleft between them all lie within a positively charged and sequence-conserved surface region. Lys120 and Asp138, both shown by mutagenesis to be catalytically important, lie at the mouth of this pocket, suggesting that this pocket is part of the active site. The positions of the HhH motif and protruding FCL motif, which contains the DNA binding residue Lys191, can accommodate B-form DNA, with a flipped-out base bound within the active site pocket. The identification of HhH and FCL sequence patterns in other DNA binding proteins suggests that these motifs may be a recurrent structural theme for DNA binding proteins.  相似文献   

4.
Helix–hairpin–helix (HhH) is a widespread motif involved in non-sequence-specific DNA binding. The majority of HhH motifs function as DNA-binding modules, however, some of them are used to mediate protein–protein interactions or have acquired enzymatic activity by incorporating catalytic residues (DNA glycosylases). From sequence and structural analysis of HhH-containing proteins we conclude that most HhH motifs are integrated as a part of a five-helical domain, termed (HhH)2 domain here. It typically consists of two consecutive HhH motifs that are linked by a connector helix and displays pseudo-2-fold symmetry. (HhH)2 domains show clear structural integrity and a conserved hydrophobic core composed of seven residues, one residue from each α-helix and each hairpin, and deserves recognition as a distinct protein fold. In addition to known HhH in the structures of RuvA, RadA, MutY and DNA-polymerases, we have detected new HhH motifs in sterile alpha motif and barrier-to-autointegration factor domains, the α-subunit of Escherichia coli RNA-polymerase, DNA-helicase PcrA and DNA glyco­s­y­lases. Statistically significant sequence similarity of HhH motifs and pronounced structural conservation argue for homology between (HhH)2 domains in different protein families. Our analysis helps to clarify how non-symmetric protein motifs bind to the double helix of DNA through the formation of a pseudo-2-fold symmetric (HhH)2 functional unit.  相似文献   

5.
The incisions in the DNA at the 3'- and 5'-side of a DNA damage during nucleotide excision repair in Escherichia coli occur in a complex consisting of damaged DNA, UvrB and UvrC. The exact requirements for the two incision events, however, are different. It has previously been shown that the 3'-incision requires the interaction between the C-terminal domain of UvrB and a homologous region in UvrC. This interaction, however, is dispensable for the 5'-incision. Here we show that the C-terminal domain of the UvrC protein is essential for the 5'-incision, whereas this domain can be deleted without affecting the 3'-incision. The C-terminal domain of UvrC is homologous with the C-terminal part of the ERCC1 protein which, in a complex with XPF, is responsible for the 5'-incision reaction in human nucleotide excision repair. Both in the UvrC and the ERCC1 domain a Helix-hairpin-Helix (HhH) motif can be indicated, albeit at different positions. Such a motif also has been found in a large variety of DNA binding proteins and it has been suggested to form a structure involved in non-sequence-specific DNA binding. In contrast to the full length UvrC protein, a truncated UvrC protein (UvrC554) lacking the entire ERCC1 homology including the HhH motif no longer binds to ssDNA. Analysis of protein-DNA complexes using bandshift experiments showed that this putative DNA binding domain of UvrC is required for stabilisation of the UvrBC-DNA complex after the 3'-incision has taken place. We propose that after the initial 3'-incision the HhH motif recognises a specific DNA structure, thereby positioning the catalytic site for the subsequent 5'-incision reaction.  相似文献   

6.
To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.  相似文献   

7.
8.
Fanconi anemia (FA) is a genetically heterogeneous disorder associated with deficiencies in the FA complementation group network. FA complementation group M (FANCM) and FA-associated protein 24 kDa (FAAP24) form a stable complex to anchor the FA core complex to chromatin in repairing DNA interstrand crosslinks. Here, we report the first crystal structure of the C-terminal segment of FANCM in complex with FAAP24. The C-terminal segment of FANCM and FAAP24 both consist of a nuclease domain at the N-terminus and a tandem helix-hairpin-helix (HhH)2 domain at the C-terminus. The FANCM-FAAP24 complex exhibits a similar architecture as that of ApXPF. However, the variations of several key residues and the electrostatic property at the active-site region render a catalytically inactive nuclease domain of FANCM, accounting for the lack of nuclease activity. We also show that the first HhH motif of FAAP24 is a potential binding site for DNA, which plays a critical role in targeting FANCM-FAAP24 to chromatin. These results reveal the mechanistic insights into the functions of FANCM-FAAP24 in DNA repair.  相似文献   

9.
10.
Base excision repair (BER) is the main pathway protecting cells from the continuous damage to DNA inflicted by reactive oxygen species. BER is initiated by DNA glycosylases, each of which repairs a particular class of base damage. NTHL1, a bifunctional DNA glycosylase, possesses both glycolytic and β-lytic activities with a preference for oxidized pyrimidine substrates. Defects in human NTHL1 drive a class of polyposis colorectal cancer. We report the first X-ray crystal structure of hNTHL1, revealing an open conformation not previously observed in the bacterial orthologs. In this conformation, the six-helical barrel domain comprising the helix-hairpin-helix (HhH) DNA binding motif is tipped away from the iron sulphur cluster-containing domain, requiring a conformational change to assemble a catalytic site upon DNA binding. We found that the flexibility of hNTHL1 and its ability to adopt an open configuration can be attributed to an interdomain linker. Swapping the human linker sequence for that of Escherichia coli yielded a protein chimera that crystallized in a closed conformation and had a reduced activity on lesion-containing DNA. This large scale interdomain rearrangement during catalysis is unprecedented for a HhH superfamily DNA glycosylase and provides important insight into the molecular mechanism of hNTHL1.  相似文献   

11.
BACKGROUND: Endonuclease III is the prototype for a family of DNA-repair enzymes that recognize and remove damaged and mismatched bases from DNA via cleavage of the N-glycosidic bond. Crystal structures for endonuclease III, which removes damaged pyrimidines, and MutY, which removes mismatched adenines, show a highly conserved structure. Although there are several models for DNA binding by this family of enzymes, no experimental structures with bound DNA exist for any member of the family. RESULTS: Nuclear magnetic resonance (NMR) spectroscopy chemical-shift perturbation of backbone nuclei (1H, 15N, 13CO) has been used to map the DNA-binding site on Archaeoglobus fulgidus endonuclease III. The experimentally determined interaction surface includes five structural elements: the helix-hairpin-helix (HhH) motif, the iron-sulfur cluster loop (FCL) motif, the pseudo helix-hairpin-helix motif, the helix B-helix C loop, and helix H. The elements form a continuous surface that spans the active site of the enzyme. CONCLUSIONS: The enzyme-DNA interaction surface for endonuclease III contains five elements of the protein structure and suggests that DNA damage recognition may require several specific interactions between the enzyme and the DNA substrate. Because the target DNA used in this study contained a generic apurinic/apyrimidinic (AP) site, the binding interactions we observed for A. fulgidus endonuclease III should apply to all members of the endonuclease III family and several interactions could apply to the endonuclease III/AlkA (3-methyladenine DNA glycosylase) superfamily.  相似文献   

12.
The barrier-to-autointegration factor BAF binds to the LEM domain (Em(LEM)) of the nuclear envelope protein emerin and plays an essential role in the nuclear architecture of metazoan cells. In addition, the BAF(2) dimer bridges and compacts double-stranded DNA nonspecifically via two symmetry-related DNA binding sites. In this article we present biophysical and structural studies on a complex of BAF(2) and Em(LEM). Light scattering, analytical ultracentrifugation, and NMR indicate a stoichiometry of one molecule of Em(LEM) bound per BAF(2) dimer. The equilibrium dissociation constant (K(d)) for the interaction of the BAF(2) dimer and Em(LEM), determined by isothermal titration calorimetry, is 0.59 +/- 0.03 microm. Z-exchange spectroscopy between corresponding cross-peaks of the magnetically non-equivalent subunits of the BAF(2) dimer in the complex yields a dissociation rate constant of 78 +/- 2s(-1). The solution NMR structure of the BAF(2)-Em(LEM) complex reveals that the LEM and DNA binding sites on BAF(2) are non-overlapping and that both subunits of the BAF(2) dimer contribute approximately equally to the Em(LEM) binding site. The relevance of the implications of the structural and biophysical data on the complex in the context of the interaction between the BAF(2) dimer and Em(LEM) at the nuclear envelope is discussed.  相似文献   

13.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   

14.
Human XPF/ERCC1 is a structure-specific DNA endonuclease that nicks the damaged DNA strand at the 5' end during nucleotide excision repair. We determined the structure of the complex of the C-terminal domain of XPF with 10 nt ssDNA. A positively charged region within the second helix of the first HhH motif contacts the ssDNA phosphate backbone. One guanine base is flipped out of register and positioned in a pocket contacting residues from both HhH motifs of XPF. Comparison to other HhH-containing proteins indicates a one-residue deletion in the second HhH motif of XPF that has altered the hairpin conformation, thereby permitting ssDNA interactions. Previous nuclear magnetic resonance studies showed that ERCC1 in the XPF-ERCC1 heterodimer can bind dsDNA. Combining the two observations gives a model that underscores the asymmetry of the human XPF/ERCC1 heterodimer in binding at an ss/ds DNA junction.  相似文献   

15.
16.
The human XPF-ERCC1 protein complex plays an essential role in nucleotide excision repair by catalysing positioned nicking of a DNA strand at the 5' side of the damage. We have recently solved the structure of the heterodimeric complex of the C-terminal domains of XPF and ERCC1 (Tripsianes et al., Structure 2005;13:1849-1858). We found that this complex comprises a pseudo twofold symmetry axis and that the helix-hairpin-helix motif of ERCC1 is required for DNA binding, whereas the corresponding domain of XPF is functioning as a scaffold for complex formation with ERCC1. Despite the functional importance of heterodimerization, the C-terminal domain of XPF can also form homodimers in vitro. We here compare the stabilities of homodimeric and heterodimeric complexes of the C-terminal domains of XPF and ERCC1. The higher stability of the XPF HhH complexes under various experimental conditions, determined using CD and NMR spectroscopy and mass spectrometry, is well explained by the structural differences that exist between the HhH domains of the two complexes. The XPF HhH homodimer has a larger interaction interface, aromatic stacking interactions, and additional hydrogen bond contacts as compared to the XPF/ERCC1 HhH complex, which accounts for its higher stability.  相似文献   

17.
To achieve productive infection, the reverse transcribed cDNA of human immunodeficiency virus type 1 (HIV-1) is inserted in the host cell genome. The main protein responsible for this reaction is the viral integrase. However, studies indicate that the virus is assisted by cellular proteins, or co-factors, to achieve integration into the infected cell. The barrier-to-autointegration factor (BAF) might prevent autointegration. Its ability to bridge DNA and the finding that the nuclear lamina-associated polypeptide-2alpha interacts with BAF suggest a role in nuclear structure organization. Integrase interactor 1 was found to directly interact with HIV-1 integrase and to activate its DNA-joining activity, and the high mobility group chromosomal protein A1 might approximate both long terminal repeat (LTR) ends and facilitate integrase binding by unwinding the LTR termini. Furthermore, the lens-epithelium-derived growth factor (LEDGF; also known as p75) seems to tether HIV-1 integrase to the chromosomes. Although a direct role in integration has only been demonstrated for LEDGF/p75, to date, each validated cellular co-factor for HIV-1 integration could constitute a promising new target for antiviral therapy.  相似文献   

18.
19.
20.
To clarify RAD51 interactions controlling homologous recombination, we report here the crystal structure of the full-length RAD51 homolog from Pyrococcus furiosus. The structure reveals how RAD51 proteins assemble into inactive heptameric rings and active DNA-bound filaments matching three-dimensional electron microscopy reconstructions. A polymerization motif (RAD51-PM) tethers individual subunits together to form assemblies. Subunit interactions support an allosteric 'switch' promoting ATPase activity and DNA binding roles for the N-terminal domain helix-hairpin-helix (HhH) motif. Structural and mutational results characterize RAD51 interactions with the breast cancer susceptibility protein BRCA2 in higher eukaryotes. A designed P.furiosus RAD51 mutant binds BRC repeats and forms BRCA2-dependent nuclear foci in human cells in response to gamma-irradiation-induced DNA damage, similar to human RAD51. These results show that BRCA2 repeats mimic the RAD51-PM and imply analogous RAD51 interactions with RAD52 and RAD54. Both BRCA2 and RAD54 may act as antagonists and chaperones for RAD51 filament assembly by coupling RAD51 interface exchanges with DNA binding. Together, these structural and mutational results support an interface exchange hypothesis for coordinated protein interactions in homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号