首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34), obtained from cultured human IM-9 lymphoid cells or freshly isolated human peripheral blood leukocytes, is modulated by a phosphorylation/dephosphorylation mechanism. Addition of MgATP + ADP to IM-9 cell microsomal reductase leads to a time-dependent loss of enzyme activity. Inactivated reductase is reactivated by rat liver reductase phosphatase. Kinase-dependent IM-9 cell microsomal reductase, prepared by heating IM-9 microsomes for 15 min at 50°C, is inactivated in the presence of MgATP and ADP only after addition of cytosolic reductase kinase from either IM-9 cells, freshly isolated leukocytes or rat liver. Inactivation is time-dependent and dependent on the cytosolic protein concentration. Inactivated reductase is reactivated by rat liver reductase phosphatase. For cultured IM-9 cells and freshly isolated leukocytes incubated with culture medium for 2 h, the ratios of active (unphosphorylated) to total (phosphorylated + unphosphorylated) reductase activity are 0.22 and 0.43, respectively. Thus, in addition to its regulation by changes in the amount of total enzyme protein, human leukocyte reductase activity is also modulated by a phosphorylation/dephosphorylation mechanism.  相似文献   

2.
Measurement of human leukocyte microsomal HMG-CoA reductase activity   总被引:6,自引:0,他引:6  
Methods were developed for determination of microsomal HMG-CoA reductase activity from freshly isolated human lymphocytes, monocytes, and granulocytes or cultured human lymphoid cells. Reductase activity in monocytes is approximately twice that in lymphocytes or granulocytes. The activity in cultured cells is approximately 34-fold greater than that in freshly isolated cells. Assay conditions were such as to preclude formation of HMG-CoA cleavage products. Leukocyte reductase activity was inhibited by dichloroacetate, a noncompetitive inhibitor of rat liver reductase and a serum cholesterol-lowering agent in man. Measurement of microsomal reductase activity from freshly isolated leukocytes may prove useful in assessing in vivo regulation of cholesterol synthesis in man.  相似文献   

3.
A highly purified rat liver protein kinase phosphorylates and inactivates acetyl-CoA carboxylase, and causes rapid inactivation of microsomal HMG-CoA reductase in the presence of MgATP. Both effects are stimulated in an identical manner by AMP, and are greatly reduced by prior treatment of the kinase with purified protein phosphatase. The dephosphorylated kinase can be reactivated in the presence of MgATP, apparently due to a distinct kinase kinase, and this reactivation is stimulated by nanomolar concentrations of palmitoyl-CoA. These results show that a common, bicyclic protein kinase cascade can potently inactivate the regulatory enzymes of both fatty acid and cholesterol biosynthesis.  相似文献   

4.
Regulation of hydroxymethylglutaryl-CoA reductase in rat leukocytes   总被引:4,自引:0,他引:4  
Methods were developed for the assay of hydroxymethylglutaryl-CoA reductase (NADPH) activity in microsomes from rat leukocytes. The activity in freshly isolated leukocytes is low compared to rat liver but can be assayed reliably. The patterns of response of leukocyte reductase in the assay to variation in substrate concentration, protein concentration, and time mimic those of rat liver reductase. Reductase activity in leukocyte microsomes, as in liver microsomes, is depressed by dietary cholesterol and by fasting and is elevated by dietary cholestyramine. Unlike liver reductase, leukocyte reductase activity does not exhibit a detectable diurnal rhythm. We conclude that the assay of reductase in freshly isolated leukocytes holds promise as a technique for detecting the effects of various factors on cholesterol synthesis in vivo.  相似文献   

5.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in microsomes isolated from cultured lymphoid (IM-9) cells or freshly isolated human leukocytes was markedly decreased by either ascorbic acid or its oxidized derivative, dehydroascorbate. Inhibition of IM-9 leukocyte HMG-CoA reductase activity was log linear between 0.01 and 10 mM ascorbic acid (25 and 81% inhibition, respectively) and 0.1 and 10 mM dehydroascorbate (5 and 75% inhibition, respectively). Inhibition was noncompetitive with respect to HMG-CoA (Km = 10.2 microM (RS); ascorbic acid, Ki = 6.4 mM; dehydroascorbate, Ki = 15 mM) and competitive with respect to NADPH (Km = 16.3 microM; acetic acid, Ki = 6.3 mM; dehydroascorbate, Ki = 3.1 mM). Ascorbic acid and dehydroascorbate are interconverted through the free radical intermediate monodehydroascorbate. Reducing agents are required to convert dehydroascorbate to monodehydroascorbate, but prevent formation of the free radical from ascorbate. In microsomes from IM-9 cells, the reducing agent, dithiothreitol, abolished HMG-CoA reductase inhibition by ascorbate but enhanced inhibition by dehydroascorbate. In addition, the concentration of monodehydroascorbate present in ascorbate solutions was directly proportional to the degree of HMG-CoA reductase inhibition by 1.0 mM ascorbate. Fifty per cent inhibition of enzyme activity occurred at a monodehydroascorbate concentration of 14 microM. These data indicate that monodehydroascorbate mediates inhibition of HMG-CoA reductase by both ascorbate and dehydroascorbate. This effect does not appear to be due to free radical-induced membrane lipid modification, however, since both ascorbate and dehydroascorbate inhibited the protease-solubilized, partially purified human liver enzyme. Since inhibition of HMG-CoA reductase occurs at physiological concentrations of ascorbic acid in the human leukocyte (0.2-1.72 mM), this vitamin may be important in the regulation of endogenous cholesterol synthesis in man.  相似文献   

6.
Methods were developed for determination of human mononuclear leukocyte HMG-CoA reductase protein concentration by a noncompetitive, solid phase, bridged biotin-avidin enzyme immunoassay procedure. Leukocyte microsomal HMG-CoA reductase, first immobilized onto a nitrocellulose filter, is sequentially reacted with 1) monospecific, polyclonal rabbit anti-rat liver HMG-CoA reductase antiserum, which crossreacts with the human liver and leukocyte enzymes; 2) biotinylated donkey anti-rabbit immunoglobulin; 3) a streptavidin-horseradish peroxidase conjugate; and 4) 4-chloro-1-naphthol and H2O2 to visualize the quantity of horseradish peroxidase bound to the immunocomplex. Color development was proportional to the quantity of either purified liver or leukocyte microsomal HMG-CoA reductase applied to the nitrocellulose. Color development was not observed, however, when HMG-CoA reductase was omitted from the nitrocellulose, when one of the reactant species was omitted from the incubation reactions, or when anti-rat liver HMG-CoA reductase antiserum was pre-absorbed with either rat liver or human leukocyte HMG-CoA reductase. Immunoreactivity of microsomal HMG-CoA reductase was independent of the phosphorylation state of the enzyme, but was inversely related to the concentration of thiol-reducing agents present in the microsomal preparation up to 4 mM. Further increases in thiol-reductant failed to produce changes in immunoreactivity. Freshly isolated mononuclear leukocyte microsomal HMG-CoA reductase protein concentration in leukocytes from 31 healthy, normocholesterolemic subjects was a linear function of HMG-CoA reductase activity (R = 0.65; P less than 0.001). The catalytic efficiency of the freshly isolated mononuclear leukocyte enzyme was 313 +/- 34 pmol of mevalonate formed per min of incubation at 37 degrees C per mg immunoreactive protein. This methodology, in conjunction with that recently developed to measure human leukocyte HMG-CoA reductase activity (1984. J. Lipid Res. 25: 967-978), should prove useful in discriminating between HMG-CoA reductase regulatory mechanisms involving changes in enzyme protein concentration and those resulting from changes in enzyme catalytic efficiency.  相似文献   

7.
Rat liver microsomal hydroxymethylglutaryl CoA reductase is inactivated when microsomes are incubated with both ATP and Mg++ (1). Activity is fully restored with purified liver cytosolic phosphorylase phosphatase. The microsomal (Mg)ATP-dependent reductase inactivating enzyme (designated I) may be extracted and assayed in an I-deficient microsomal system. The soluble I preparation itself is inactivated with phosphorylase phosphatase. Inactive I can be reactivated in the presence of (Mg)ATP by an apparent cAMP-independent protein kinase in the microsomal extract.These findings are consistent with a model in which both hydroxymethylglutaryl CoA reductase and an associated protein kinase (I) are subject to reversible covalent modulation by phosphorylation-dephosphorylation.  相似文献   

8.
The activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (hydroxymethylglutaryl-CoA reductase) was considerably inhibited during incubation with ATP+Mg2+. The inactivated enzyme was reactivated on further incubation with partially purified cytosolic phosphoprotein phosphatase. The inactivation was associated with a decrease in the apparent Km of the reductase for hydroxymethylglutaryl-CoA, and this was reversed on reactivation. The slight increase in activity observed during incubation of microsomal fraction without ATP was not associated with a change in apparent Km and, unlike the effect of the phosphatase, was not inhibited by NaF. Liver microsomal fraction from rats given cholesterol exhibited a low activity of hydroxymethylglutaryl-CoA reductase with a low apparent Km for hydroxymethylglutaryl-CoA. Mícrosomal fraction from rats fed cholestyramine exhibited a high activity with a high Km. To discover whether these changes had resulted from phosphorylation and dephosphorylation of the reductase, microsomal fraction from rats fed the supplemented diets and the standard diet were inactivated with ATP and reactivated with phosphoprotein phosphatase. Inactivation reduced the maximal activity of the reductase in each microsomal preparation and also reduced the apparent Km for hydroxymethylglutaryl-CoA. There was no difference between the preparations in the degree of inactivation produced by ATP. Treatment with phosphatase restored both the maximal activity and the apparent Km of each preparation, but never significantly increased the activity above that observed with untreated microsomal fraction. It is concluded that hydroxymethylglutaryl-CoA reductase in microsomal fraction prepared by standard procedures is almost entirely in the dephosphorylated form, and that the difference in kinetic properties in untreated microsomal fraction from rats fed the three diets cannot be explained by differences in the degree of phosphorylation of the enzyme.  相似文献   

9.
Extensively purified rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase was used to examine the role of ADP in inactivation of HMG-CoA reductase (EC 1.1.1.34). Solubilized HMG-CoA reductase was a suitable substrate for HMG-CoA reductase kinase. At sufficiently high concentrations of solubilized HMG-CoA reductase, reductase kinase activity approached that measured using microsomal HMG-CoA reductase as substrate. Inactivation of solubilized HMG-CoA reductase by HMG-CoA reductase kinase required both MgATP and ADP. Other nucleoside diphosphates, including alpha, beta-methylene-ADP, could replace ADP. HMG-CoA reductase kinase catalyzed phosphorylation of bovine serum albumin fraction V by [gamma-32P]ATP. This process also required a nucleoside diphosphate (e.g. alpha, beta-methylene-ADP). Nucleoside diphosphates thus act on HMG-CoA reductase kinase, not on HMG-CoA reductase. For inactivation of HMG-CoA reductase, the ability of nucleoside triphosphates to replace ATP decreased in the order ATP greater than dATP greater than GTP greater than ITP, UTP. TTP and CTP did not replace ATP. Both for inactivation of HMG-CoA reductase and for phosphorylation of bovine serum albumin protein, the ability of nucleoside diphosphates to replace ADP decreased in the order ADP greater than CDP, dADP greater than UDP. GDP did not replace ADP. Nucleoside di- and triphosphates thus appear to bind to different sites on HMG-CoA reductase kinase. Nucleoside diphosphates act as allosteric activators of HMG-CoA reductase kinase. For inactivation of HMG-CoA reductase by HMG-CoA reductase kinase, Km for ATP was 140 microM and the activation constant, Ka, for ADP was 1.4 mM. The concentration of ADP required to modulate reductase kinase activity in vitro falls within the physiological range. Modulation of HMG-CoA reductase kinase activity, and hence of HMG-CoA reductase activity, by changes in intracellular ADP concentrations thus may represent a control mechanism of potential physiological significance.  相似文献   

10.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase exists in interconvertible active and inactive forms in cultured fibroblasts from normal and familial hypercholesterolemic subjects. The inactive form can be activated by endogenous or added phosphoprotein phosphatase. Active or partially active HMG-CoA reductase in cell extracts was inactivated by a ATP-Mg-dependent reductase kinase. Incubation of phosphorylated (inactive) HMG-CoA reductase with purified phosphoprotein phosphatase was associated with dephosphorylation (reactivation) and complete restoration of HMG-CoA reductase activity. Low density lipoprotein, 25-hydroxycholesterol, 7-ketocholesterol, and mevalonolactone suppressed HMG-CoA reductase activity by a short-term mechanism involving reversible phosphorylation. 25-Hydroxycholesterol, which enters cells without the requirement of low density lipoprotein-receptor binding, inhibited the HMG-CoA reductase activity in familial hypercholesterolemic cells by reversible phosphorylation. Measurement of the short-term effects of inhibitors on the rate of cholesterol synthesis from radiolabeled acetate revealed that HMG-CoA reductase phosphorylation was responsible for rapid suppression of sterol synthesis. Reductase kinase activity of cultured fibroblasts was also affected by reversible phosphorylation. The active (phosphorylated) reductase kinase can be inactivated by dephosphorylation with phosphatase. Inactive reductase kinase can be reactivated by phosphorylation with ATP-Mg and a second protein kinase from rat liver, designated reductase kinase kinase. Reductase kinase kinase activity has been shown to be present in the extracts of cultured fibroblasts. The combined results represent the initial demonstration of a short-term regulation of HMG-CoA reductase activity and cholesterol synthesis in normal and receptor-negative cultured fibroblasts involving reversible phosphorylation of both HMG-CoA reductase and reductase kinase.  相似文献   

11.
The activity of glycogen synthase phosphatase in rat liver stems from the co-operation of two proteins, a cytosolic S-component and a glycogen-bound G-component. It is shown that both components possess synthase phosphatase activity. The G-component was partially purified from the enzyme-glycogen complex. Dissociative treatments, which increase the activity of phosphorylase phosphatase manyfold, substantially decrease the synthase phosphatase activity of the purified G-component. The specific inhibition of glycogen synthase phosphatase by phosphorylase a, originally observed in crude liver extracts, was investigated with purified liver synthase b and purified phosphorylase a. Synthase phosphatase is strongly inhibited, whether present in a dilute liver extract, in an isolated enzyme-glycogen complex, or as G-component purified therefrom. In contrast, the cytosolic S-component is insensitive to phosphorylase a. The activation of glycogen synthase in crude extracts of skeletal muscle is not affected by phosphorylase a from muscle or liver. Consequently we have studied the dephosphorylation of purified muscle glycogen synthase, previously phosphorylated with any of three protein kinases. Phosphorylase a strongly inhibits the dephosphorylation by the hepatic G-component, but not by the hepatic S-component or by a muscle extract. These observations show that the inhibitory effect of phosphorylase a on the activation of glycogen synthase depends on the type of synthase phosphatase.  相似文献   

12.
Several rat liver HMG-CoA-reductase (HMG-CoA-Rd) phosphatase activities have been shown to be associated with the endoplasmic reticulum. These activities were not due to glycogen contamination, as judged not only from different patterns of solubilization of the microsomal membranes and the glycogen pellet but also by differential centrifugation behavior under standard conditions and in a sucrose gradient. We present evidence that at least three forms of protein phosphatase are associated with microsomal membranes: a polycation-stimulated type 2A phosphatase, a type 2C phosphatase, and a non-2A, non-2B, non-2C phosphatase. This last HMG-CoA-Rd phosphatase activity corresponding to an 85 kDa protein was partially purified by several chromatographic procedures. The IC50 value for the inhibition of the HMG-CoA-Rd phosphatase by I-2 was 10-fold higher than for the inhibition of the purified type 1 catalytic subunit from rabbit skeletal muscle. The microsomal HMG-CoA-Rd phosphatase activity was slightly affected by the protein inhibitor that inhibits type 2A activity when HMG-CoA reductase is the substrate. The HMG-CoA-Rd phosphatase activity is spontaneously active and it is not reactivated in the presence of Mg2+ or polycations. The holoenzyme does not contain the inhibitor-2 and it is not reactivated by incubation with ATP and glycogen synthase kinase-3. Proteolytic treatment of the enzyme yielded a polypeptide fragment of low Mr (37 kDa) with reduced activity. A model of holoenzymatic HMG-CoA-Rd phosphatase and its relation to the microsomal membranes is presented.  相似文献   

13.
1. Acetyl-CoA carboxylase was purified to homogeneity, in the presence of protein phosphatase inhibitors, from rat liver sampled without freeze-clamping. The enzyme was in a highly phosphorylated state (4.8 mol/subunit) of low specific activity, and could be dramatically reactivated by treatment with protein phosphatase-2A. Amino acid sequencing and fast-atom-bombardment mass spectrometry showed that the enzyme was phosphorylated in Ser79, Ser1200 and Ser1215, the three sites known to be phosphorylated in cell-free assays by the AMP-activated protein kinase. 2. The inactive enzyme could also be completely reactivated using a limited treatment with trypsin, which removes the N-terminal segment containing Ser79 and reduces the phosphate content to 3.5 mol/subunit. These results strengthen previous findings that it is phosphorylation at Ser79 by the AMP-activated protein kinase that is responsible for the inactivation, and not the phosphorylation of the 220-kDa core fragment (which contains Ser1200 and Ser1215). 3. Analysis of the phosphorylation state of Ser79 in acetyl-CoA carboxylase from rat liver showed that phosphorylation occurs post mortem if freeze-clamping is not used. The higher phosphorylation observed in extracts made without freeze-clamping correlates with a large increase in AMP and decrease in ATP (presumably caused by hypoxia during removal of the liver), and with increased activity of the AMP-activated protein kinase. These results provide a rational explanation for the post mortem phosphorylation events, and re-emphasize the point that rapid cooling of cells and tissues is essential when measuring the expressed activity of acetyl-CoA carboxylase (as well as 3-hydroxy-3-methylglutaryl-CoA reductase). 4. Using the freeze-clamping procedure, the ratio of 'expressed' activity (measured in the presence of protein phosphatase inhibitors) to 'total' activity (measured after complete dephosphorylation) of rat liver acetyl-CoA carboxylase showed a marked diurnal rhythm, changing from 50% in the active form in the middle of the dark period to less than 10% active in the middle of the light period. The very low activity in the light period was associated with a high level of phosphorylation in Ser79. This diurnal rhythm is very similar to that previously described for the phosphorylation of 3-hydroxy-3-methylglutaryl-CoA reductase, another substrate for the AMP-activated protein kinase. Neither the activity of the AMP-activated protein kinase nor the content of AMP, ADP or ATP changed between the dark or light periods.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Hamster adrenal HMG-CoA reductase activity was enhanced with rat liver cytosolic phosphorylase phosphatase as well as with similarly isolated beef and hamster adrenal cytosolic preparations. HMG-CoA reductase was inactivated when microsomes were incubated in an EDTA-free medium but containing MgCl2 and ATP. The reductase activity of microsomes isolated from adrenals of hamsters sacrificed at 1100 h and 1900 h were (mean ± SEM, pmo1/mg protein/min.) 299.6±62.3 and 588.3 ± 96.6 respectively and could be enhanced by a factor of four when preincubated in the presence of liver phosphatase.  相似文献   

15.
The influence of membrane cholesterol content on 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase, EC 1.1.1.34) in rat liver microsomes was investigated. Microsomes were enriched in cholesterol by incubation with egg phosphatidylcholine-cholesterol vesicles and the nonspecific lipid transfer protein from rat liver. By this method, the microsomal cholesterol content was 2.5-fold enhanced up to final concentrations of 140 nmol cholesterol per mg microsomal protein. In another experiment, microsomes isolated from rats fed a cholesterol-rich diet were depleted of cholesterol by incubation with egg phosphatidylcholine vesicles and the transfer protein. Both cholesterol enrichment and depletion had virtually no effect on the microsomal HMG-CoA reductase activity. In another set of experiments, normal rat liver microsomes were incubated with human serum, resulting in a rise of microsomal cholesterol content. This was reflected in an increase of acyl-CoA:cholesterol acyltransferase activity but failed to have an effect on HMG-CoA reductase.  相似文献   

16.
菊花等十五种中药对大鼠胆固醇代谢的影响   总被引:1,自引:0,他引:1  
 大鼠口服菊花、郁金及刺五加水煎剂(剂量按药典成人用量折算)三周后,抑制其肝微粒体羟甲基戊二酰辅酶A还原酶的活力,并激活肝微粒体胆固醇7α-羟化酶。在相同状况下,首乌及川芎可抑制羟甲基戊二酰辅酶A还原酶,虽然对胆固醇7α-羟化酶亦有激活作用,但统计学上无意义。泽泻、蒲黄、丹参、黄精、虎杖、延胡索及菌陈等则只抑制肝微粒体羟甲基戊二酰辅酶A还原酶,而对胆固醇7α-羟化酶无作用。黄芪及枸杞对肝微粒体羟甲基戊二酰辅酶A还原酶的活力虽然稍有激活作用,但统计学上无意义。我们实验状况下,上述十五种中药只有菌陈能显著地提高大鼠血清高密度酯蛋白胆固醇的含量。刺五加水煎液对肝微粒体羟甲基戊二酰辅酶A还原酶和胆固醇7α-羟化酶活力调节作用是通过可逆的磷酸化及脱磷酸化作用而实现的。 山楂及刺五加水煎剂,在体外对大鼠肝微粒体羟甲基戊二酰辅酶A还原酶具有强烈的抑制作用。其作用机理亦是通过可逆的磷酸化及脱磷酸化作用进行的。  相似文献   

17.
Microsomal glycerolphosphate acyltransferase from rat adipose tissue is shown to be inactivated with time upon incubation with ATP. The inactivation can be observed in postmitochondrial supernatant as well as in washed microsomes. However, the effect is more pronounced upon addition of the cytosolic fraction. This activity is specific for ATP, is dependent on the nucleotide concentration, and is prevented when ATP is substituted by beta,gamma-methylene-ATP. Some protection is provided by amiloride but not by EGTA or cAMP-protein kinase inhibitor. Also, the level of enzyme inactivation is not modified by addition of cAMP-dependent protein kinase and its substrates. Inactivated glycerol-phosphate acyltransferase from ATP-treated microsomes can be reactivated by incubation with partially purified protein phosphatase from rat liver. These results suggest the existence in adipose tissue of a protein kinase (cAMP independent) that may be involved in the regulation of glycerolphosphate acyltransferase.  相似文献   

18.
1-Alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase plays an important regulatory role in the biosynthesis of platelet activating factor, a potent bioactive mediator. We tested the hypothesis that the activity of acetyltransferase may be modulated by enzymatic phosphorylation and dephosphorylation. The results showed that acetyltransferase activity in rat spleens was 2- to 3-fold higher in microsomes isolated in the presence of F-than in those isolated in the presence of Cl-. The microsomal acetyltransferase could be activated by preincubation of microsomes, isolated in the presence of Cl-, with ATP, Mg2+, and the soluble fraction from rat spleen. Addition of phosphatidylserine, diacylglycerols, plus Ca2+ further enhanced the activity. The increase in the activity of acetyltransferase was abolished by treatment of the activated microsomes with alkaline phosphatase. Conversely, the activity of acetyltransferase can be reactivated in the alkaline phosphatase-treated microsomes with incubation conditions that favor phosphorylation. Therefore, our findings suggest that acetyltransferase activity is regulated by reversible activation/inactivation through phosphorylation/dephosphorylation.  相似文献   

19.
A purified preparation of rat liver microsomal NADPH-cytochrome c reductase has been shown to catalyze the NADPH-dependent peroxidation of isolated microsomal lipid. In addition to ADP and ferric ion required for NADPH-dependent lipid peroxidation in whole microsomes, this system requires high ionic strength and a critical concentration of EDTA. The peroxidation activity can be inhibited by superoxide dismutase suggesting that the superoxide anion, produced by this flavoprotein, is involved in the lipid peroxidation reaction.  相似文献   

20.
The type-1 protein phosphatase associated with hepatic microsomes has been distinguished from the glycogen-bound enzyme in five ways. (1) The phosphorylase phosphatase/synthase phosphatase activity ratio of the microsomal enzyme (measured using muscle phosphorylase a and glycogen synthase (labelled in sites-3) as substrates) was 50-fold higher than that of the glycogen-bound enzyme. (2) The microsomal enzyme had a greater sensitivity to inhibitors-1 and 2. (3) Release of the catalytic subunit from the microsomal type-1 phosphatase by tryptic digestion was accompanied by a 2-fold increase in synthase phosphatase activity, whereas release of the catalytic subunit from the glycogen-bound enzyme decreased synthase phosphatase activity by 60%. (4) 95% of the synthase phosphatase activity was released from the microsomes with 0.3 M NaCl, whereas little activity could be released from the glycogen fraction with salt. (5) The type-1 phosphatase separated from glycogen by anion-exchange chromatography could be rebound to glycogen, whereas the microsomal enzyme (separated from the microsomes by the same procedure, or by extraction with NaCl) could not. These findings indicate that the synthase phosphatase activity of the microsomal enzyme is not explained by contamination with glycogen-bound enzyme. The microsomal and glycogen-associated enzymes may contain a common catalytic subunit complexed to microsomal and glycogen-binding subunits, respectively. Thiophosphorylase a was a potent inhibitor of the dephosphorylation of ribosomal protein S6, HMG-CoA reductase and glycogen synthase, by the glycogen-associated type-1 protein phosphatase. By contrast, thiophosphorylase a did not inhibit the dephosphorylation of S6 or HMG-CoA reductase by the microsomal enzyme, although the dephosphorylation of glycogen synthase was inhibited. The I50 for inhibition of synthase phosphatase activity by thiophosphorylase a catalysed by either the glycogen-associated or microsomal type-1 phosphatases, or for inhibition of S6 phosphatase activity catalysed by the glycogen-associated enzyme, was decreased 20-fold to 5-10 nM in the presence of glycogen. The results suggest that the physiologically relevant inhibitor of the glycogen-associated type-1 phosphatase is the phosphorylase a-glycogen complex, and that inhibition of the microsomal type-1 phosphatase by phosphorylase a is unlikely to play a role in the hormonal control of cholesterol or protein synthesis. Protein phosphatase-1 appears to be the principal S6 phosphatase in mammalian liver acting on the serine residues phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号