首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ARHGAP21 is a Rho family GTPase-activating protein (RhoGAP) that controls the Arp2/3 complex and F-actin dynamics at the Golgi complex by regulating the activity of the small GTPase Cdc42. ARHGAP21 is recruited to the Golgi by binding to another small GTPase, ARF1. Here, we present the crystal structure of the activated GTP-bound form of ARF1 in a complex with the Arf-binding domain (ArfBD) of ARHGAP21 at 2.1 A resolution. We show that ArfBD comprises a PH domain adjoining a C-terminal alpha helix, and that ARF1 interacts with both of these structural motifs through its switch regions and triggers structural rearrangement of the PH domain. We used site-directed mutagenesis to confirm that both the PH domain and the helical motif are essential for the binding of ArfBD to ARF1 and for its recruitment to the Golgi. Our data demonstrate that two well-known small GTPase-binding motifs, the PH domain and the alpha helical motif, can combine to create a novel mode of binding to Arfs.  相似文献   

2.
Small GTPases of the ADP-ribosylation factor (ARF) family, except for ARF6, mainly localize to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We recently showed that class I ARFs (ARF1 and ARF3) localize to recycling endosomes, as well as to the Golgi, and are redundantly required for recycling of endocytosed transferrin. On the other hand, the roles of class II ARFs (ARF4 and ARF5) are not yet fully understood, and the complementary or overlapping functions of class I and class II ARFs have been poorly characterized. In this study, we find that simultaneous depletion of ARF1 and ARF4 induces extensive tubulation of recycling endosomes. Moreover, the depletion of ARF1 and ARF4 inhibits retrograde transport of TGN38 and mannose-6-phosphate receptor from early/recycling endosomes to the trans-Golgi network (TGN) but does not affect the endocytic/recycling pathway of transferrin receptor or inhibit retrograde transport of CD4-furin from late endosomes to the TGN. These observations indicate that the ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane.  相似文献   

3.
The small GTPase ADP-ribosylation factor (ARF) is absolutely required for coatomer vesicle formation on Golgi membranes but not for anterograde transport to the medial-Golgi in a mammalian in vitro transport system. This might indicate that the in vivo mechanism of intra-Golgi transport is not faithfully reproduced in vitro, or that intra-Golgi transport occurs by a nonvesicular mechanism. As one approach to distinguishing between these possibilities, we have characterized two additional cell-free systems that reconstitute transport to the trans-Golgi (trans assay) and trans-Golgi network (TGN assay). Like in vitro transport to the medial-Golgi (medial assay), transport to the trans-Golgi and TGN requires cytosol, ATP, and N-ethylmaleimide–sensitive fusion protein (NSF). However, each assay has its own distinct characteristics of transport. The kinetics of transport to late compartments are slower, and less cytosol is needed for guanosine-5′-O-(3-thiotriphosphate) (GTPγS) to inhibit transport, suggesting that each assay reconstitutes a distinct transport event. Depletion of ARF from cytosol abolishes vesicle formation and inhibition by GTPγS, but transport in all assays is otherwise unaffected. Purified recombinant myristoylated ARF1 restores inhibition by GTPγS, indicating that the GTP-sensitive component in all assays is ARF. We also show that asymmetry in donor and acceptor membrane properties in the medial assay is a unique feature of this assay that is unrelated to the production of vesicles. These findings demonstrate that characteristics specific to transport between different Golgi compartments are reconstituted in the cell-free system and that vesicle formation is not required for in vitro transport at any level of the stack.  相似文献   

4.
The plasma membrane from Saccharomyces cerevisiae X2180-1A and a secretion-blocked mutant, secl (P. Novick and R. Schekman, Proc. Natl. Acad. Sci. U.S.A. 76:1858-1862, 1979) has been purified. Cell walls were digested by treatment with lyticase followed by concanavalin A coating of spheroplasts. alpha-Methylmannoside treatment after lysis, sonication at high salt concentration, and fractionation on a Renografin gradient resulted in two highly purified membrane fractions sedimenting at densities of 1.15 and 1.17 g/cm3. Yields determined by recovery of vanadate-sensitive ATPase activity were 11 to 18%, and those determined by recovery of the spheroplast surface label 125I were 17 to 29%. Iodinated cells have most of their label in sedimentable, nonspheroplast material. However, both membrane populations contain some 125I surface label and show ATPase activity with pH optima only at 5.5. The apparent Vmax of the plasma membrane ATPase equals 360 to 560 nmol of ATP hydrolyzed per min per mg of protein, with a Km for ATP of 0.7 mM. ATPase specific activity is not decreased in mutant plasma membrane. Analysis of 125I-labeled plasma membrane proteins by two-dimensional gel electrophoresis revealed seven major proteins on the plasma membrane surface.  相似文献   

5.
ADP ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that activate cholera toxin and phospholipase D and are critical components of vesicular trafficking pathways. ARF domain protein 1 (ARD1), a member of the ARF superfamily, contains a 46-kDa amino-terminal extension, which acts as a GTPase-activating protein (GAP) with activity towards its ARF domain. When overexpressed, ARD1 was associated with lysosomes and the Golgi apparatus. In agreement with this finding, lysosomal and Golgi membranes isolated from human liver by immunoaffinity contained native ARD1. ARD1, expressed as a green fluorescent fusion protein, was initially associated with the Golgi network and subsequently appeared on lysosomes, suggesting that ARD1 might undergo vectorial transport between the two organelles. Here we show by microscopic colocalization that GAP and ARF domains determine lysosomal and Golgi localization, respectively, consistent with the presence of more than one signal motif. Using truncated ARD1 molecules, expressed as green fluorescent fusion proteins, it was found that the signal for lysosomal localization was present in residues 301 to 402 of the GAP domain. Site-specific mutagenesis demonstrated that the sequence (369)KXXXQ(373) in the GAP domain was responsible for lysosomal localization. Association of ARD1 with the Golgi apparatus required tyrosine-based motifs. A green fluorescent fusion protein containing the QKQQQQF motif was partially associated with lysosomes, suggesting that this motif contains the information sufficient for lysosomal targeting. These results suggest that ARD1 is a multidomain protein with ARF and GAP regions, which contain Golgi and lysosomal localization signals, respectively, that could function in vesicular trafficking.  相似文献   

6.
7.
The Golgi apparatus is a stack of compartments that serves as a central junction for membrane traffic, with carriers moving through the stack as well as arriving from, and departing toward, many other destinations in the cell. This requires that the different compartments in the Golgi recruit from the cytosol a distinct set of proteins to mediate accurate membrane traffic. This recruitment appears to reflect recognition of small GTPases of the Rab and Arf family, or of lipid species such as PtdIns(4)P and diacylglycerol, which provide a unique "identity" for each compartment. Recent work is starting to reveal the mechanisms by which these labile landmarks are generated in a spatially restricted manner on specific parts of the Golgi.  相似文献   

8.
Competitive displacement experiments of 125I-endothelin (ET)-1, -2, or -3 binding to chick cardiac membranes were performed with unlabeled ET-1, -2, -3, and sarafotoxin S6b (STX) as competitors. 125I-ET-1 and -2 binding was competitively inhibited by increasing concentrations of these unlabeled peptides in the same order; i.e. ET-2 greater than or equal to ET-1 greater than ET-3 greater than STX. In contrast, the order of potency in displacing 125I-ET-3 binding was ET-3 greater than ET-2 greater than or equal to ET-1 greater than STX. Affinity labeling of the membranes by cross-linking with 125I-ET-1 and -2 via disuccinimidyl tartarate yielded one major specific band with an apparent Mr = 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography. On the other hand, affinity labeling with 125I-ET-3 showed that two major and one minor bands of Mr = 34,000, 46,000, and 53,000, respectively, were specifically labeled. These results indicate the presence of two distinct types of ET receptors, one of which has higher affinity for ET-1 and -2 than ET-3 and the other is conversely ET-3-preferring.  相似文献   

9.
The Golgi-membrane vesicles present in particulate preparations of lactating rat mammary gland were biosynthetically loaded with [14C]lactose. This lactose was effectively retained by particles sedimented after exposure to 0.25 M-disaccharide, but was partly lost after exposure to 0.25 M-glucose or other solutes of similar size. Loss of lactose was time-, concentration- and temperature-dependent and varied with the solute structure. This behaviour is ascribed to the presence of protein in the Golgi membrane, forming a specific carrier or channel that serves to supply glucose for lactose synthesis.  相似文献   

10.
A form of CAT-like activity was found bound present in rat brain synaptosomal membranes which could be recovered in the Triton X-114 phase. The enzyme activity was slightly activated by NaCl, had a pH maximum around 8 and showed a temperature dependence with a Q10 of 2.28. It was inhibited 100% by 10–6 M naphthyl vinyl pyridinium but not by 10–5 M diisopropyl phosphofluoridate. The kinetics of this bound form of CAT were similar to the soluble form of the enzyme. TheK m was 405±58 M for choline and 62±8 M for AcCoA. Five isoelectric forms were found with pH's of 4.55, 6.05, 7.06, 7.36, and 8.00 which is in contrast to the three isoelectric forms found of the soluble enzyme in rat brain. The presence of a CAT-like activity in the plasma membrane was confirmed with experiments performed using intact synaptosomes and intact cells in culture. Acetylcholine, synthesized from radioactive AcCoA by intact rat brain synaptosomes, was recovered in the incubation medium and only in the presence of exogenous choline or when the production of choline was stimulated by oleate via the activation of phospholipase D. This was also seen in experiments with intact pheochromocytoma cell cultures (PC 12) which synthesize acetylcholine that was recoverved in the incubation medium. Acetylcholine formation in the presence of choline and AcCoA was stimulated in cells that had been grown in the presence of nerve growth factor (NGF). The localization of 1% of CAT activity in a transbilayer position in the plasma membrane, could suggest a possible role of this enzymatic form in the regulation of acetylcholine synthesis.  相似文献   

11.
The relative contributions of the effector lymphocyte responses to the AIDS virus envelope glycoprotein (env) were explored in simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys. CD8+, MHC class I-restricted, env-specific CTL were cloned from PBL of SIVmac-infected monkeys, indicating that such cells constitute a component of the env-specific effector lymphocyte response. A limiting dilution 51Cr release assay was then established for quantitating the frequency of SIVmac-specific effector lymphocytes in PBL of rhesus monkeys. Using this assay we demonstrate that SIVmac env-specific effector lymphocytes are comprised of both CD16-, MHC class I-restricted and CD16+, MHC class I-unrestricted cells. We also demonstrate that the env-specific response is the predominant SIVmac-specific effector lymphocyte response in rhesus monkeys. These studies document the complexity of the effector lymphocyte response to the AIDS virus envelope glycoprotein and establish the role played by two distinct effector cell populations in this response.  相似文献   

12.
In low or absence of glucose, alpha-cells generate rhythmic action potentials and secrete glucagon. alpha-Cell T-type Ca(2+) channels are believed to be pacemaker channels, which are expected to open near the resting membrane potential (around -60 mV) to initiate a small depolarization. A previous publication, however, showed that alpha-cell T-type Ca(2+) channels have an activation threshold of -40 mV, which does not appear to fulfill their role as pacemakers. In this work, we investigated the Ca(2+) channel characteristics in alpha-cells of mouse-insulin-promoter green-fluorescent-protein (MIP-GFP) mouse. The beta-cells of MIP-GFP were conveniently distinguished as green cells, while immunostaining indicated that the majority of non-green cells were alpha-cells. We found that majority of alpha-cells possessed T-type Ca(2+) channels having an activation threshold of -40 mV; these cells also had high-voltage-activated (HVA) Ca(2+) channels (activation threshold of -20 mV). A novel finding here is that a minority of alpha-cells had T-type Ca(2+) channels with an activation threshold of -60 mV. This minor population of alpha-cells was, surprisingly, devoid of HVA Ca(2+) channels. We suggest that this alpha-cell subpopulation may act as pacemaker cells in low or absence of glucose.  相似文献   

13.
Factor VIII (FVIII), a plasma glycoprotein, is an essential cofactor in the blood coagulation cascade. It is a multidomain protein, known to bind to phosphatidylserine (PS)-containing membranes. Based on X-ray and electron crystallography data, binding of FVIII to PS-containing membranes has been proposed to occur only via the C2 domain. Based on these models, the molecular topology of membrane-bound FVIII can be envisioned as one in which only a small fraction of the protein interacts with the membrane, whereas the majority of the molecule is exposed to an aqueous milieu. We have investigated the topology of the membrane-bound FVIII using biophysical and biochemical techniques. Circular dichroism (CD) and fluorescence studies indicate no significant changes in the secondary and tertiary structure of FVIII associated with the membranes. Acrylamide quenching studies show that the protein is predominantly present on the surface of the membrane, exposed to the aqueous milieu. The light scattering and electron microscopy studies indicate the absence of vesicle aggregation and fusion. Binding studies with antibodies directed against specific epitopes in the A1, A2 and C2 domains suggest that FVIII binds to the membrane primarily via C2 domain including the specific phospholipid binding epitope (2303-2332) and may involve subtle conformational changes in this epitope region.  相似文献   

14.
Orientation of cholera toxin bound to model membranes.   总被引:1,自引:1,他引:1       下载免费PDF全文
The orientation of cholera toxin bound to its cell-surface receptor, ganglioside GM1, in a supporting lipid membrane was determined by electron microscopy of negatively stained toxin-lipid samples. Image analysis of two dimensional crystalline arrays has shown previously that the B-subunits of cholera toxin orient at the membrane surface as a pentameric ring with a central channel (Reed, R. A., J. Mattai, and G.G. Shipley. 1987. Biochemistry. 26:824-832; Ribi, H. O., D. S. Ludwig, K. L. Mercer, G. K. Schoolnik, and R. D. Kornberg. 1988. Science (Wash, DC). 239:1272-1276). We recorded images of negatively stained cholera toxin and isolated B-pentamers oriented perpendicular to the lipid surface so that the pentamer ring is viewed from the side. The pentamer dimensions, estimated from the average of 100 molecules, are approximately 60 by 30 A. Images of side views of whole cholera toxin clearly show density above the pentamer ring away from the lipid layer. On the basis of difference maps between averages of side views of whole toxin and B-pentamers, this density above the pentamer has been identified as a portion of the A-subunit. The A-subunit may also extend into the pore of the pentamer. In addition, Fab fragments from a monoclonal antibody to the A-subunit were mixed with the toxin prior to binding to GM1. Density from the Fab was localized to the region of toxin above the pentamer ring confirming the location of the A-subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The small GTPase, ADP-ribosylation factor-6 (ARF6), has been implicated in regulating membrane traffic and remodeling cortical F-actin. Using real-time video analysis of actin assembly in living cells, we investigated the function and mechanism of ARF6 in control of actin assembly. Expression of an activated form of ARF6 that mimicks the GTP-bound form of the GTPase induced actin assembly resulting in the movement of vesicle-like particles, some of which contain markers for pinosomes. Activated ARF6 also stimulated actin assembly at foci on the ventral surface of the cell and stimulated fluid phase pinocytosis. Particle motility induced by ARF6 involved Arp2/3 complex, tyrosine kinase activity, phospholipase D (PLD) and D3-phosphoinositides, but not phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). We conclude that ARF6 regulates actin assembly for pinosome motility and at foci on the ventral cell surface.  相似文献   

16.
Four subunits of the acetylcholine receptor molecule, obtained from the electric organ of Torpedo ocellata, have been isolated using polyacrylamide gel electrophoresis, and assayed by titration with a fluorescent lanthanide, terbium, and by affinity-labeling with p-(N-maleimido)benzyl [trimethyl-3H] ammonium iodide. The site with which the activator-analogue affinity label reacts, as well as the terbium-binding sites, are mainly associated with the smallest of the subunits of an apparent molecular weight of 40,000. Calcium competes with terbium for these binding sites. The affinity for terbium is the same in the intact molecule as in the subunit (KTb ? 19 ± 1 μM), but the affinity for calcium decreases by a factor of 4 (KCa ? 4 mM) in the subunit. Hydrolysis of the receptor, catalyzed by trypsin and chymotrypsin, to peptides with an apparent molecular weight of 8000 or less, does not affect the terbium-binding sites. These experiments indicate that the binding sites for neural activators and for calcium are associated with the same subunit, and that the terbium- and calcium-binding sites reflect structural properties of the polypeptide chain rather than the three-dimensional structure of the protein.  相似文献   

17.
《The Journal of cell biology》1995,128(6):1003-1017
The ARF GTP binding proteins are believed to function as regulators of membrane traffic in the secretory pathway. While the ARF1 protein has been shown in vitro to mediate the membrane interaction of the cytosolic coat proteins coatomer (COP1) and gamma-adaptin with the Golgi complex, the functions of the other ARF proteins have not been defined. Here, we show by transient transfection with epitope-tagged ARFs, that whereas ARF1 is localized to the Golgi complex and can be shown to affect predictably the assembly of COP1 and gamma-adaptin with Golgi membranes in cells, ARF6 is localized to the endosomal/plasma membrane system and has no effect on these Golgi-associated coat proteins. By immuno-electron microscopy, the wild-type ARF6 protein is observed along the plasma membrane and associated with endosomes, and overexpression of ARF6 does not appear to alter the morphology of the peripheral membrane system. In contrast, overexpression of ARF6 mutants predicted either to hydrolyze or bind GTP poorly shifts the distribution of ARF6 and affects the structure of the endocytic pathway. The GTP hydrolysis-defective mutant is localized to the plasma membrane and its overexpression results in a profound induction of extensive plasma membrane vaginations and a depletion of endosomes. Conversely, the GTP binding-defective ARF6 mutant is present exclusively in endosomal structures, and its overexpression results in a massive accumulation of coated endocytic structures.  相似文献   

18.
Mammalian cells endocytose a variety of proteins and lipids without utilising clathrin-coated pits. Detailed molecular mechanisms for clathrin-independent endocytosis are unclear. Several markers for this process, including glycosphingolipid-binding bacterial toxin subunits such as cholera toxin B subunit (CTxB), and glycosyl-phosphatidyl-inositol (GPI)-anchored proteins, are found in detergent-resistant membrane fractions (DRMs), or 'lipid rafts'. The Golgi complex constitutes one principal intracellular destination for these markers. Uptake of both CTxB and GPI-anchored proteins may involve caveolae, small invaginations in the plasma membrane (PM). However, the identity of intermediate organelles involved in PM to Golgi trafficking, as well as the function of caveolins, defining protein components of caveolae, are unclear. This paper shows that molecules which partition into DRMs and are endocytosed in a clathrin-independent fashion, accumulate in a discrete population of endosomes en route to the Golgi complex. These endosomes are devoid of markers for classical early and recycling endosomes, but do contain caveolin-1. Caveolin-1-positive endosomes are sites for the sorting of caveolin-1 away from Golgi-bound cargoes, although caveolin-1 itself is unlikely to have a direct function in PM to Golgi transport.  相似文献   

19.
20.
Jang KJ  Kim MS  Feltrin D  Jeon NL  Suh KY  Pertz O 《PloS one》2010,5(12):e15966

Background

The process of neurite outgrowth is the initial step in producing the neuronal processes that wire the brain. Current models about neurite outgrowth have been derived from classic two-dimensional (2D) cell culture systems, which do not recapitulate the topographical cues that are present in the extracellular matrix (ECM) in vivo. Here, we explore how ECM nanotopography influences neurite outgrowth.

Methodology/Principal Findings

We show that, when the ECM protein laminin is presented on a line pattern with nanometric size features, it leads to orientation of neurite outgrowth along the line pattern. This is also coupled with a robust increase in neurite length. The sensing mechanism that allows neurite orientation occurs through a highly stereotypical growth cone behavior involving two filopodia populations. Non-aligned filopodia on the distal part of the growth cone scan the pattern in a lateral back and forth motion and are highly unstable. Filopodia at the growth cone tip align with the line substrate, are stabilized by an F-actin rich cytoskeleton and enable steady neurite extension. This stabilization event most likely occurs by integration of signals emanating from non-aligned and aligned filopodia which sense different extent of adhesion surface on the line pattern. In contrast, on the 2D substrate only unstable filopodia are observed at the growth cone, leading to frequent neurite collapse events and less efficient outgrowth.

Conclusions/Significance

We propose that a constant crosstalk between both filopodia populations allows stochastic sensing of nanotopographical ECM cues, leading to oriented and steady neurite outgrowth. Our work provides insight in how neuronal growth cones can sense geometric ECM cues. This has not been accessible previously using routine 2D culture systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号