首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mdm2 promotes ubiquitination of the tumor suppressor p53 and can function as an oncogene by largely downregulating p53. Although a p53-independent role of Mdm2 has been reported, the underlying mechanism remains unclear. In the present study, we indicated that Mdm2 is involved in p53-independent carcinogenesis via downregulation of pRB. Expression of pRB showed an apparent inverse correlation with Mdm2 expression in 30 patients with non-small cell lung cancer. There were some cases with the p53 mutations in which a high level of Mdm2 and a low level of pRB were expressed. Mdm2 promoted ubiquitination of pRB in cells without wild-type p53. Furthermore, pRB-mediated G1 arrest in a p53-deficient cell line, SRB1, was significantly enhanced by a mutant Mdm2 that lacks pRB ubiquitination activity. Soft-agar colony formation activity of p53-knockout MEF was increased by wild-type Mdm2 but not mutant Mdm2. These findings suggest that overexpression of Mdm2 can perturb a RB pathway regardless of the p53 gene status, promoting carcinogenesis.  相似文献   

3.
4.
Apoptosis has an important role during development to regulate cell number. In differentiated cells, however, activation of autophagy has a critical role by enabling cells to remain functional following stress. In this study, we show that the antiapoptotic BCL-2 homologue MCL-1 has a key role in controlling both processes in a developmentally regulated manner. Specifically, MCL-1 degradation is an early event not only following induction of apoptosis, but also under nutrient deprivation conditions where MCL-1 levels regulate activation of autophagy. Furthermore, deletion of MCL-1 in cortical neurons of transgenic mice activates a robust autophagic response. This autophagic response can, however, be converted to apoptosis by either reducing the levels of the autophagy regulator Beclin-1, or by a concomitant activation of BAX. Our results define a pathway whereby MCL-1 has a key role in determining cell fate, by coordinately regulating apoptosis and autophagy.  相似文献   

5.
Upon treatment with some DNA damaging agents, human H1299 tumor-derived cells expressing inducible versions of wild-type or mutant p53 with inactive transactivation domain I (p53Q22/S23) undergo apoptosis. In cells expressing either version of p53, caspase 2 activation is required for release of cytochrome c and cell death. Furthermore, silencing of PIDD (a factor previously shown to be required for caspase 2 activation) by siRNA suppresses apoptosis by both wild-type p53 and p53Q22/S23. Despite the finding that caspase 2 is essential for DNA damage-facilitated, p53-mediated apoptosis, induction of wild-type p53 (with or without DNA damage) resulted in a reduction of caspase 2 mRNA and protein levels. In this study we sought to provide a mechanism for the negative regulation of caspase 2 by p53 as well as provide insight as to why p53 may repress a key mediator of p53-dependent apoptosis. Mechanistically, we show that DNA binding and/or transactivation domains of p53 are crucial for mediating transrepression. Further, expression of p21 (in p53-null cells inducibly expressing p21) is sufficient to mediate repression of caspase 2. Deletion of p21 or E2F-1 not only abrogated repression of caspase 2, but also stimulated the expression of caspase 2 above basal levels, implicating the requirement for an intact p21/Rb/E2F pathway in the down-regulation of caspase 2. As this p53/p21-dependent repression of caspase 2 can occur in the absence of DNA damage, caspase 2 repression does not simply seem to be a consequence of the apoptotic process. Down-regulation of caspase 2 levels by p53 may help to determine cell fate by preventing cell death when unnecessary.  相似文献   

6.
7.
8.
9.
10.
11.
Breast cancers that are “triple-negative” for the clinical markers ESR1, PGR, and HER2 typically belong to the Basal-like molecular subtype. Defective Rb, p53, and Brca1 pathways are each associated with triple-negative and Basal-like subtypes. Our mouse genetic studies demonstrate that the combined inactivation of Rb and p53 pathways is sufficient to suppress the physiological cell death of mammary involution. Furthermore, concomitant inactivation of all three pathways in mammary epithelium has an additive effect on tumor latency and predisposes highly penetrant, metastatic adenocarcinomas. The tumors are poorly differentiated and have histologic features that are common among human Brca1-mutated tumors, including heterogeneous morphology, metaplasia, and necrosis. Gene expression analyses demonstrate that the tumors share attributes of both Basal-like and Claudin-low signatures, two molecular subtypes encompassed by the broader, triple-negative class defined by clinical markers.  相似文献   

12.
Alcohol abuse is a major risk factor for cancer of the upper alimentary tract, the upper respiratory tract, and liver. Chromosome damage is used as early effect biomarker in the surveillance of human exposure to genotoxic carcinogens. In the present study, two genetic markers, namely chromosome aberrations (CAs) and micronuclei (MN), were used to evaluate genetic damage in peripheral lymphocytes from 20 alcoholics, 20 abstinent alcoholics, and 20 controls. Composition of the three groups was fairly similar as regards sex, age and smoking habits. A highly significant increase was observed in the frequencies of CA and MN in lymphocytes of alcoholics as compared both with controls and abstinent alcoholics. However, no correlation was found between the length of alcohol abuse and the frequencies of either biomarkers in alcoholics. CA and MN frequencies in abstinent alcoholics were similar than those in controls.Our data indicate that CA and MN can be two useful biomarkers to assess genetic damage associated with alcohol abuse. They could be included in programs for cancer prevention in alcoholics. Abstinence appears to normalize the frequency of both MN and CA. This could offer therapists another tool to help alcoholics change their lifestyle.  相似文献   

13.
14.
15.
Xylarianaphthol-1, a novel dinaphthofuran derivative, was isolated from a marine sponge-derived fungus of order Xylariales on the guidance of a bioassay using the transfected human osteosarcoma MG63 cells (MG63luc+). The chemical structure of xylarianaphthol-1 was determined from the 1H and 13C NMR analysis and was further confirmed by the total synthesis. Xylarianaphthol-1 activated p21 promoter stably transfected in MG63 cells dose-dependently. Expression of p21 protein in the wild-type MG63 cells was also increased by xylarianaphthol-1 treatment.  相似文献   

16.
MDM2 expression is down-regulated upon E2F1 over-expression, but the mechanism is not well defined. In the current study, we found that E2F1 inhibits MDM2 expression by suppressing its promoter activity. Although E2F1 binds to the MDM2 promoter, the inhibitory effect of E2F1 on the MDM2 promoter does not require the direct binding. We demonstrate that E2F1 inhibits MDM2 promoter activity in a p53-dependent manner. Knockdown of p53 in U2OS cells impairs the inhibitory effect of E2F1 on the MDM2 promoter. Consistent with this observation, E2F1 does not inhibit MDM2 promoter activity in p53-deficient H1299 cells, and the inhibition is restored when p53 is expressed exogenously. Both E2F1 and p53 are up-regulated after DNA damage stimulation. We show that such stimulation induces E2F1 to inhibit MDM2 promoter activity and promote p53 accumulation. Furthermore, inhibition of MDM2 by E2F1 promotes E2F1 induced apoptosis. These data suggest that E2F1 regulates the MDM2-p53 pathway by inhibiting p53 induced up-regulation of MDM2.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号