首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosine sulfate was identified as a constituent of human heparin cofactor II by analysis of sulfate-labeled protein secreted by a human hepatoma-derived cell line and of purified protein from human plasma. Alkaline hydrolysis of heparin cofactor II released tyrosine sulfate as demonstrated by anion-exchange high performance liquid chromatography of hydrolysates. Two sites of sulfation were identified, and the amino acid sequences of the sites were established by sequential Edman degradation of sulfate-containing tryptic peptides that were isolated by reverse-phase high performance liquid chromatography. Each peptide contains only a single tyrosine residue so that the sites of sulfation can be assigned unambiguously. The two sites of sulfation are separated by 13 residues and represent an internal sequence repeat in the heparin cofactor II molecule. The two sites have the following sequences. Glu56-Asp-Asp-Asp-Tyr(SO4)-Leu-Asp62 Glu69-Asp-Asp-Asp-Tyr(SO4)-Ile-Asp75 Sulfate-labeled heparin cofactor II formed a covalent complex with thrombin in a heparin-dependent manner. Thus, the sulfate-containing form of the protein was shown to be biologically active. The characteristic sulfate-containing segment of heparin cofactor II, which contains 17 acidic amino acid residues over a span of 30 residues, may contribute to the unique properties of this thrombin inhibitor.  相似文献   

2.
J Mikkelsen  J Thomsen  M Ezban 《Biochemistry》1991,30(6):1533-1537
By the use of recombinant technology, several stable Chinese hamster ovary (CHO) cell lines expressing human FVIII were established. Thrombin treatment and SDS-PAGE analysis of the purified recombinant FVIII (rFVIII) revealed a striking difference from plasma-derived FVIII (pFVIII). A 43-kDa fragment of the FVIII heavy chain appears as a double band from rFVIII, while a single band from pFVIII is observed. All other fragments from the two samples appeared similar by SDS-PAGE. The heterogeneity is caused by incomplete tyrosine sulfation of one or more of the three potential tyrosine sulfation sites (Tyr718, Tyr719, Tyr723). To investigate if there is a general limitation and heterogeneity in the tyrosine sulfation of rFVIII, two other potential tyrosine sulfation sites on the FVIII light chain (Tyr1664, Tyr1680) were analyzed. The results show that both sites on the pFVIII light chain and on the rFVIII light chain are completely sulfated. The limitation of CHO cells to tyrosine sulfate rFVIII is therefore only restricted to a few sites. The two sulfated forms of rFVIII can easily be separated by ion-exchange chromatography, indicating the importance of the sulfate groups on the charge and/or conformation of FVIII. Both forms of rFVIII possess identical in vitro coagulation activity, von Willebrand factor binding, and thrombin activation profile. However, the difference in tyrosine sulfation may change other biological properties of FVIII.  相似文献   

3.
Physicochemical properties of recombinant human erythropoietin were examined. This protein, produced in Chinese hamster ovary cells, showed a conformation apparently identical with the natural product isolated from human urine when examined by circular dichroism, UV absorbance, and fluorescence spectroscopy. Sedimentation equilibrium experiments showed the recombinant erythropoietin preparation to be essentially a single macromolecular component with a molecular weight of 30,400 and a carbohydrate content of 39%. The Stokes radius of recombinant erythropoietin was estimated to be 32 A from gel filtration, much larger than the 20-A radius calculated for a sphere of the observed molecular weight. This difference may be ascribed to the extensive glycosylation. The fluorescence and phosphorescence spectra showed that the luminescent tryptophan(s) is (are) solvent-exposed and can be quenched by I- and acrylamide but not by Cs+. On acid titration, the recombinant erythropoietin showed a conformational transition with a midpoint of pH 4.1. This suggests that the net charges on the protein moiety rather than on the whole molecule play a role in protein structure stability.  相似文献   

4.
Recombinant human insulin-like growth factor binding protein 3 (hIGFBP-3) stably expressed in chinese hamster ovary cells (CHO cells) has been purified to homogeneity from serum-free culture media. The purified protein migrates as a doublet (45/43 kDa) upon SDS-PAGE. The purified recombinant hIGFBP-3 is fully active and binds one mole of IGF-I per mole of recombinant binding protein. When the transfected CHO cells are treated with tunicamycin a single 29 kDa hIGFBP-3 protein is observed. This expressed hIGFBP-3 protein maintains its ability to bind IGF-I. N-Glycanase treatment of the purified hIGFBP-3 protein results in a protein that migrates similar to E. coli-derived IGFBP-3 upon SDS-PAGE under reducing conditions (30 kDa). Carboxymethylation of hIGFBP-3 suggests that all 18 cysteines are involved in disulfide linkages. These results represent the first purification and characterization of recombinant hIGFBP-3 expressed in CHO cells.  相似文献   

5.
Recombinant human prorenin (rh-prorenin) was purified from supernatants of Chinese hamster ovary (CHO) cell line transfected with the cDNA for rh-prorenin by employing a simple two-step procedure which consisted of ammonium sulfate precipitation and immunoaffinity chromatography using a monoclonal antibody specific for the profragment of human prorenin. About 100-fold purification with 35% recovery was achieved after the two steps. Purified rh-prorenin migrated as a single protein band with apparent molecular weights of 46,000-47,000 and about 50,000 on SDS-PAGE and gel filtration (HPLC), respectively, although it consisted of multiple components (pI values, 5.6-6.4) that could be resolved by isoelectric focusing (IEF). The treatment of rh-prorenin with endo-beta-N-acetylglucosaminidase converted the rather broad protein band to a sharp band on SDS-PAGE and reduced the number of multiple pI peaks on IEF. Amino-terminal sequence analysis of both the purified rh-prorenin and rh-renin revealed Leu-Pro-Thr-Asp- and Leu-Thr-Leu-Gly-, respectively, which agreed with those predicted from the base sequences of their cDNA. These data suggested that microheterogeneity of rh-prorenin is due to the carbohydrate moiety, but not to the protein moiety. Purified rh-prorenin was almost inactive, but was cleaved at the carboxyl end of a dibasic pair Lys-2-Arg-1 by trypsin and converted to active renin. However, at the early stage during trypsin activation, new intermediate forms between rh-prorenin and rh-renin were formed, suggesting multiple activation steps of rh-prorenin in addition to the one step activation.  相似文献   

6.
Two methods are described enabling the plasma membrane from Chinese hamster ovary (CHO) cells to be obtained rapidly, relatively pure and with a good yield. In both cases, cells were disrupted by nitrogen cavitation in an isoosmotic buffer either at pH 5.4 or at pH 7.4. In the first approach, cells were lysed at pH 7.4 and the plasma membrane and cell organelles were isolated on a self-generated gradient of Percoll, at neutral pH. Mitochondria and endoplasmic reticulum were recovered in the denser fractions, plasma membrane fragments were found in the lighter fractions, but always contaminated by lysosomes. Because lysosomes were found to sediment in acidic conditions, cells were lysed at pH 5.4 and presedimentation (1500 x g) of the cell homogenate at the same pH enabled more than 80% of the lysosomes to be removed. Then, ultracentrifugation of the supernatant over a Percoll gradient at neutral pH yielded plasma membrane fractions practically free of lysosomes with an enrichment ratio of 3 and fractions of mitochondria and endoplasmic reticulum with enrichment ratios of 17 and 6, respectively. A major problem was encountered in the final step of elimination of Percoll from the purified plasma membrane fractions. Whatever the technique used for eliminating Percoll, plasma membranes were observed to be contaminated by a Percoll constituent which prevented further purification and biochemical identification of the lipids extracted from these membrane fractions to be carried out. A second method of plasma membrane preparation was tested consisting first in the coating of the cell surface with positive colloidal silica which was stabilized by an anionic polymer. Then, and through differential centrifugations, plasma membrane fractions were easily obtained within less than 1 h, with a yield of 65% and an enrichment ratio of 7. The coating pellicle was quantitatively removed thus enabling any biochemical manipulation of the plasma membrane to be carried out. The lipids present in the plasma membrane of CHO cells were analyzed and are described, both in terms of headgroup and acyl chain composition.  相似文献   

7.
A Chinese hamster ovary (CHO) cell line expressing recombinant human interferon-gamma (IFN-gamma) was grown under glucose limitation in a chemostate at a constant dilution rate of 0.015 h(-1) with glucose feed concentrations of 2.75 mM and 4.25 mM. The changes in cell concentration that accompanied changes in the glucose feed concentration indicated that the cells were glucose-limited. The cell yield on glucose remained constant, but there was a decline in residual glucose concentration and a reduced lactate yield from glucose in the latter stages of the culture. The consumption rates for many of the essential amino acids were increased later in the culture. The volumetric rate of interferon-gamma production was maintained throughout the course of this culture, indicating that IFN-gamma expression was stable under these conditions. However, the specific rate of IFN-gamma production was significantly lower at the higher glucose feed concentration. Under glucose limitation, the proportion of fully glycosylated IFN-gamma produced by these cells was less than that produced in the early stages of batch cultures. The proportion of fully glycosylated IFN-gamma increased during transient periods of glucose excess, suggesting that the culture environment influences the glycosylation of IFN-gamma.  相似文献   

8.
Human recombinant apolipoprotein (apo) A-I was produced by Chinese hamster ovary (CHO) cells and Escherichia coli with expression vectors containing cDNAs encoding preproapoA-I or apoA-I, respectively. The apoA-I from CHO cells was purified from the culture medium by ammonium sulfate precipitation, phenyl-Sepharose chromatography, and affinity purification on anti-apoA-I immunoabsorber. Human apoA-I was produced in E. coli as a fusion protein with glutathione S-transferase. A four amino acid linker, which separated the two proteins, was specifically recognized and cut by Factor Xa. The purification was accomplished by chromatography of E. coli extracts on glutathione-Sepharose and digestion with Factor Xa. The highest production level was found to be 0.5 micrograms/ml of culture medium per 48 h for a clone of stable transformant of CHO cells, whereas E. coli could produce as much as 20 micrograms/ml of bacterial culture. These apoA-I forms were compared in terms of molecular weight, isoelectric point, and expression of several epitopes. Recombinant apoA-I obtained from CHO cells appears intact and its isoelectric point is compatible with that of the mature form and the proform of apoA-I, whereas a part of the apoA-I produced by E. coli does not contain the COOH-terminus. Also, two of six epitopes are expressed to a greater extent in apoA-I obtained from E. coli than in apoA-I obtained from human plasma.  相似文献   

9.
The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-gamma (IFN-gamma), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-gamma. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-gamma within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-gamma are heterogeneous in their environment, with variable access to O(2) and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
The complete peptide map of purified recombinant human interleukin 5 (rhIL-5) was determined to verify its primary structure, glycosylation sites, and disulfide bonding structure. Each peptide fragment generated by Achromobacter protease I (API) digestion was purified and characterized by amino acid analysis and amino acid sequence analysis. After digestion with API, we could identify all the peptides which were expected from human IL-5 cDNA sequence. The analyses of sulfhydryl content in rhIL-5 molecule and disulfide-containing peptide obtained from API digestion indicated that active form of rhIL-5 existed as an antiparallel dimer linked by two pairs of Cys-44 and Cys-86. In addition, we concluded that Thr-3 and Asn-28 were glycosylated. The results indicate that primary structure of rhIL-5 is highly homogeneous and observed heterogeneity is due to the difference in the content of carbohydrate.  相似文献   

11.
Biochemical and physiochemical properties of recombinant human antithrombin III were examined. This protein, produced in Chinese hamster ovary cells, showed a conformation apparently identical with the natural product isolated from human plasma when examined by circular dichroism, UV absorbance, and fluorescence spectroscopy. Comparison of the NH2-terminal sequences of recombinant and human plasma-derived antithrombin III showed that on synthesis and secretion of the recombinant protein from Chinese hamster ovary cells the signal peptide is correctly cleaved by the corresponding endoplasmic signal peptidase. The recombinant antithrombin III has identical properties in heparin binding and biological activities as determined in vitro by two-dimensional immunoelectrophoresis, progressive inhibitor, and heparin cofactor assays. Analysis of the carbohydrate portion of recombinant antithrombin III synthesized in Chinese hamster ovary cells revealed glycosylation of the complex type. Characterization of the oligosaccharide chains present in the recombinant protein reveals three major fractions, A (20%), B (60%), and C (20%). Fraction A contains tri- and tetraantennary complex-type oligosaccharides, fraction B contains biantennary oligosaccharides, and fraction C partially truncated biantennary structures. Pharmacokinetic studies with recombinant and plasma-derived antithrombin III in rabbits showed that the clearance behavior of both proteins is very similar and can be described by a double exponential decrease with almost identical kinetic parameters.  相似文献   

12.
alpha-N-Acetylglucosaminidase (EC 3.2.1.50) is a lysosomal enzyme that is deficient in the genetic disorder Sanfilippo syndrome type B. To study the human enzyme, we expressed its cDNA in Lec1 mutant Chinese hamster ovary (CHO) cells, which do not synthesize complex oligosaccharides. The enzyme was purified to apparent homogeneity from culture medium by chromatography on concanavalin A-Sepharose, Poros 20-heparin, and aminooctyl-agarose. The purified enzyme migrated as a single band of 83 kDa on SDS-PAGE and as two peaks corresponding to monomeric and dimeric forms on Sephacryl-300. It had an apparent K(m) of 0.22 mM toward 4-methylumbelliferyl-alpha-N-acetylglucosaminide and was competitively inhibited by two potential transition analogs, 2-acetamido-1,2-dideoxynojirimycin (K(i) = 0.45 microM) and 6-acetamido-6-deoxycastanospermine (K(i) = 0.087 microM). Activity was also inhibited by mercurials but not by N-ethylmaleimide or iodoacetamide, suggesting the presence of essential sulfhydryl residues that are buried. The purified enzyme preparation corrected the abnormal [(35)S]glycosaminoglycan catabolism of Sanfilippo B fibroblasts in a mannose 6-phosphate-inhibitable manner, but its effectiveness was surprisingly low. Metabolic labeling experiments showed that the recombinant alpha-N-acetylglucosaminidase secreted by CHO cells had only a trace of mannose 6-phosphate, probably derived from contaminating endogenous CHO enzyme. This contrasts with the presence of mannose 6-phosphate on naturally occurring alpha-N-acetylglucosaminidase secreted by diploid human fibroblasts and on recombinant human alpha-l-iduronidase secreted by the same CHO cells. Thus contrary to current belief, overexpressing CHO cells do not necessarily secrete recombinant lysosomal enzyme with the mannose 6-phosphate-targeting signal; this finding has implications for the preparation of such enzymes for therapeutic purposes.  相似文献   

13.
Asparagine linked (N-linked) glycosylation is an important modification of recombinant proteins, because the attached oligosaccharide chains can significantly alter protein properties. Potential glycosylation sites are not always occupied with oligosaccharide, and site occupancy can change with the culture environment. To investigate the relationship between metabolism and glycosylation site occupancy, we studied the glycosylation of recombinant human interferon-gamma (IFN-gamma) produced in continuous culture of Chinese hamster ovary cells. Intracellular nucleotide sugar levels and IFN-gamma glycosylation were measured at different steady states which were characterized by central carbon metabolic fluxes estimated by material balances and extracellular metabolite rate measurements. Although site occupancy varied over a rather narrow range, we found that differences correlated with the intracellular pool of UDP-N-acetylglucosamine + UDP-N-acetylgalactosamine (UDP-GNAc). Measured nucleotide levels and estimates of central carbon metabolic fluxes point to UTP depletion as the cause of decreased UDP-GNAc during glucose limitation. Glucose limited cells preferentially utilized available carbon for energy production, causing reduced nucleotide biosynthesis. Lower nucleoside triphosphate pools in turn led to lower nucleotide sugar pools and reduced glycosylation site occupancy. Subsequent experiments in batch and fed-batch culture have confirmed that UDP-sugar concentrations are correlated with UTP levels in the absence of glutamine limitation. Glutamine limitation appears to influence glycosylation by reducing amino sugar formation and hence UDP-GNAc concentration. The influence of nucleotide sugars on site occupancy may only be important during periods of extreme starvation, since relatively large changes in nucleotide sugar pools led to only minor changes in glycosylation.  相似文献   

14.
Prorenin was isolated by immunoprecipitation from the culture medium of Chinese hamster ovary cells transfected with a human prorenin cDNA. The N-linked oligosaccharide structures on the in vivo [3H]mannose-labeled, purified protein were characterized using a combination of serial lectin affinity chromatography, high-pressure liquid chromatography, ion-exchange chromatography, and size-exclusion chromatography and treatment with specific glycosidases and methylation analysis. Approximately 61% of the oligosaccharides on the molecule are complex type, in the form of tetraantennary (2%), 2,6-branched triantennary (13%), 2,4-branched triantennary (3%), and biantennary (43%) structures. The majority of all complex type structures are core-fucosylated. Sialic acids are linked at the C-3 position of terminal galactose, and the degree of sialylation of the bi- and triantennary structures varies between nonsialylated and fully sialylated; no tetraatennary structure contains more than three sialic acid residues. Recombinant prorenin contains 4% hybrid-type structures, all of which carry a terminal sialic acid residue. The remaining 35% of the structures on the molecule are high mannose type, composed of 5, 6, or 7 mannose residues. Approximately 6% of the high mannose type structures and 10% of the hybrid structures are phosphorylated, as judged by their susceptibility to treatment with alkaline phosphatase. Compositional analysis of an unlabeled preparation of the protein suggested the presence of approximately 1.4 oligosaccharide units per molecule.  相似文献   

15.
To probe the effects of N-glycosylation on the fibrin-dependent plasminogenolytic activity of tissue-type plasminogen activator (t-PA), we have expressed a human recombinant t-PA (rt-PA) gene in Chinese hamster ovary (CHO) cells and in a murine C127 cell line. The resulting rt-PA glycoproteins were isolated and their associated N-linked oligosaccharide structures determined by using a combination of high-resolution Bio-Gel P-4 gel filtration chromatography, sequential exoglycosidase digestion, and methylation analysis. The results show that CHO rt-PA is N-glycosylated differently from murine C127 derived rt-PA. Further, both rt-PA's are N-glycosylated differently from t-PA derived from a human colon fibroblast and the Bowes melanoma cell line (Parekh et al., 1989), confirming that N-glycosylation of the human t-PA polypeptide is cell-type-specific. Both CHO and murine rt-PA were fractionated on lysine-Sepharose chromatography. The N-glycosylation of the major forms was analyzed and their fibrin-dependent plasminogenolytic activity determined by using an indirect amidolytic assay with Glu-plasminogen and a chromogenic plasmin substrate. The results suggest that the various forms of rt-PA differ from one another with respect to the kinetics of their fibrin-dependent activation of plasminogen. Together, these data support the notion (Wittwer et al., 1989) that N-glycosylation influences the fibrin-dependent catalytic activity of t-PA and that t-PA when expressed in different cell lines may consist of kinetically and structurally distinct glycoforms.  相似文献   

16.
Follistatin (FS), a glycoprotein, plays an important role in cell growth and differentiation through the neutralization of the biological activities of activins. In this study, we analyzed the glycosylation of recombinant human FS (rhFS) produced in Chinese hamster ovary cells. The results of SDS-PAGE and MALDI-TOF MS revealed the presence of both non-glycosylated and glycosylated forms. FS contains two potential N-glycosylation sites, Asn95 and Asn259. Using mass spectrometric peptide/glycopeptide mapping and precursor-ion scanning, we found that both N-glycosylation sites were partially glycosylated. Monosaccharide composition analyses suggested the linkages of fucosylated bi- and triantennary complex-type oligosaccharides on rhFS. This finding was supported by mass spectrometric oligosaccharide profiling, in which the m/z values and elution times of some of the oligosaccharides from rhFS were in good agreement with those of standard oligosaccharides. Site-specific glycosylation was deduced on the basis of the mass spectra of the glycopeptides. It was suggested that biantennary oligosaccharides are major oligosaccharides located at both Asn95 and Asn259, whereas the triantennary structures are present mainly at Asn95.  相似文献   

17.
Enzymatically active human testis angiotensin-converting enzyme (ACE) was expressed in Chinese hamster ovary (CHO) cells stably transfected with each of three vectors: p omega-ACE contains a full-length testis ACE cDNA under the control of a retroviral promoter; and pLEN-ACEVII and pLEN-ACE6/5, in which full-length and membrane anchor-minus testis ACE cDNAs, respectively, are under the control of the human metallothionein IIA promoter and SV40 enhancer. In every case, active recombinant human testis ACE (hTACE) was secreted in a soluble form into the culture media, up to 2.4 mg/liter in the media of metal-induced, high-producing clones transfected with one of the pLEN vectors. In addition, membrane-bound recombinant enzyme was recovered from detergent extracts of cell pellets of CHO cells transfected with either p omega-ACE or pLEN-ACE-VII. Recombinant converting enzyme was purified to homogeneity by single-step affinity chromatography of conditioned media and detergent-extracted cell pellets in 85 and 70% overall yield, respectively. Purified hTACE from all sources comigrated with the native testis isozyme on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with M(r) approximately 100 kDa. The native and recombinant proteins cross-reacted equally with anti-human kidney ACE antiserum on Western blotting. The catalytic activity of recombinant angiotensin-converting enzyme, in terms of angiotensin I and 2-furanacryloyl-Phe-Gly-Gly hydrolysis, chloride activation, and lisinopril inhibition, was essentially identical to that of the native enzyme. The facile recovery in high yield of fully active hTACE from the media of stably transfected CHO cells provides a suitable system for investigating structure-function relationships in this enzyme.  相似文献   

18.
Adipocyte-derived leucine aminopeptidase (A-LAP) is a recently identified novel member of the M1 family of zinc-metallopeptidases. Transfection of the A-LAP cDNA into COS-7 cells resulted in the secretion of the enzyme. In this study, recombinant A-LAP was expressed in Chinese hamster ovary cells, purified to homogeneity and its enzymatic properties were characterized. The purified enzyme was active towards a synthetic substrate, L-leucyl-p-nitroanilide, yielding a V(max) of 3.55 micromol/min/mg and a K(m) of 1.28 mM, and was shown to be a monomeric protein with molecular mass of 120 kDa in solution. By monitoring the sequential N-terminal amino acid liberation, it was found that the enzyme hydrolyzes a variety of bioactive peptides, including angiotensin II and kallidin. Immunohistochemical analysis indicated that the enzyme is expressed in the cortex of the human kidney, where tissue kallikrein is localized. Taken together, these results indicate that A-LAP possesses a broad substrate specificity towards naturally occurring peptide hormones and suggest that it plays a role in the regulation of blood pressure through the inactivation of angiotensin II and/or the generation of bradykinin in the kidney.  相似文献   

19.
Recombinant human interleukin 5 (rhIL-5) expressed in Chinese hamster ovary cells was purified and characterized. Molecular heterogeneity was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two major components of Mr around 40,000 were detected under non-reducing conditions. However, under reducing conditions, the Mr of rhIL-5 was determined to be 22,000 and 20,000. After treatment with endoglycosidase F, a band with an apparent Mr of 18,000 was observed. Treatment of rhIL-5 with 2-mercaptoethanol followed by N-ethylmaleimide resulted in its dissociation into a monomeric form. This alkylated rhIL-5 was biologically less active than intact rhIL-5. These results suggest that rhIL-5 exists as a dimer, and that the heterogeneity of rhIL-5 is mainly due to the difference in the content of carbohydrate. Moreover, the formation of disulfide bond(s) might be important for the biological activity of rhIL-5.  相似文献   

20.
Angiopoietin-1 (Ang1) is an essential molecule for blood vessel formation. In an effort to produce large quantities of Ang1, recombinant Chinese hamster ovary (rCHO) cells expressing a high level of recombinant human Ang1 protein (rhAng1) with an amino terminal FLAG-tag were constructed by transfecting the expression vector into dihydrofolate reductase-deficient CHO cells and subsequent gene amplification in a medium containing step-wise increments of methotrexate, such as 0.02, 0.08, and 0.32 μM. The rhAng1 secreted from rCHO cells was purified at a purification yield of 18.4% from the cultured medium using an anti-FLAG M2 agarose affinity gel. SDS-PAGE and Western blot analyses showed that rCHO cells secret rhAng1 as heterogeneous multimers. Moreover, rhAng1 expressed in rCHO cells is biologically active in vitro as demonstrated by its ability to bind to the Tie2 receptor and to phosphorylate Tie2. Therefore, the rhAng1 produced from CHO cells could be useful for clarifying the biological effects of exogenous rhAng1 in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号