首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecules that inhibit the formation of an abnormal isoform of prion protein (PrPSc) in prion-infected cells are candidate therapeutic agents for prion diseases. Understanding how these molecules inhibit PrPSc formation provides logical basis for proper evaluation of their therapeutic potential. In this study, we extensively analyzed the effects of the anti-PrP monoclonal antibody (mAb) 44B1, pentosan polysulfate (PPS), chlorpromazine (CPZ) and U18666A on the intracellular dynamics of a cellular isoform of prion protein (PrPC) and PrPSc in prion-infected mouse neuroblastoma cells to re-evaluate the effects of those agents. MAb 44B1 and PPS rapidly reduced PrPSc levels without altering intracellular distribution of PrPSc. PPS did not change the distribution and levels of PrPC, whereas mAb 44B1 appeared to inhibit the trafficking of cell surface PrPC to organelles in the endocytic-recycling pathway that are thought to be one of the sites for PrPSc formation. In contrast, CPZ and U18666A initiated the redistribution of PrPSc from organelles in the endocytic-recycling pathway to late endosomes/lysosomes without apparent changes in the distribution of PrPC. The inhibition of lysosomal function by monensin or bafilomycin A1 after the occurrence of PrPSc redistribution by CPZ or U18666A partly antagonized PrPSc degradation, suggesting that the transfer of PrPSc to late endosomes/lysosomes, possibly via alteration of the membrane trafficking machinery of cells, leads to PrPSc degradation. This study revealed that precise analysis of the intracellular dynamics of PrPC and PrPSc provides important information for understanding the mechanism of anti-prion agents.  相似文献   

2.
The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc. Furthermore, the presence of desialylated PrPC inhibited the production of PrPSc within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrPC contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrPC. Desialylated PrPC was less sensitive to cholesterol depletion than PrPC and was not released from cells by treatment with glimepiride. The presence of desialylated PrPC in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases.  相似文献   

3.
In prion diseases, synapse dysfunction, axon retraction and loss of neuronal polarity precede neuronal death. The mechanisms driving such polarization defects, however, remain unclear. Here, we examined the contribution of RhoA-associated coiled-coil containing kinases (ROCK), key players in neuritogenesis, to prion diseases. We found that overactivation of ROCK signaling occurred in neuronal stem cells infected by pathogenic prions (PrPSc) and impaired the sprouting of neurites. In reconstructed networks of mature neurons, PrPSc-induced ROCK overactivation provoked synapse disconnection and dendrite/axon degeneration. This overactivation of ROCK also disturbed overall neurotransmitter-associated functions. Importantly, we demonstrated that beyond its impact on neuronal polarity ROCK overactivity favored the production of PrPSc through a ROCK-dependent control of 3-phosphoinositide-dependent kinase 1 (PDK1) activity. In non-infectious conditions, ROCK and PDK1 associated within a complex and ROCK phosphorylated PDK1, conferring basal activity to PDK1. In prion-infected neurons, exacerbated ROCK activity increased the pool of PDK1 molecules physically interacting with and phosphorylated by ROCK. ROCK-induced PDK1 overstimulation then canceled the neuroprotective α-cleavage of normal cellular prion protein PrPC by TACE α-secretase, which physiologically precludes PrPSc production. In prion-infected cells, inhibition of ROCK rescued neurite sprouting, preserved neuronal architecture, restored neuronal functions and reduced the amount of PrPSc. In mice challenged with prions, inhibition of ROCK also lowered brain PrPSc accumulation, reduced motor impairment and extended survival. We conclude that ROCK overactivation exerts a double detrimental effect in prion diseases by altering neuronal polarity and triggering PrPSc accumulation. Eventually ROCK emerges as therapeutic target to combat prion diseases.  相似文献   

4.
Prion diseases are fatal, neurodegenerative disorders in humans and animals and are characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrPC), denoted PrPSc, which represents the major component of infectious scrapie prions. Characterization of the mechanism of conversion of PrPC into PrPSc and identification of the intracellular site where it occurs are among the most important questions in prion biology. Despite numerous efforts, both of these questions remain unsolved. We have quantitatively analyzed the distribution of PrPC and PrPSc and measured PrPSc levels in different infected neuronal cell lines in which protein trafficking has been selectively impaired. Our data exclude roles for both early and late endosomes and identify the endosomal recycling compartment as the likely site of prion conversion. These findings represent a fundamental step towards understanding the cellular mechanism of prion conversion and will allow the development of new therapeutic approaches for prion diseases.  相似文献   

5.
Conversion of prion protein (PrPC) into a pathological isoform (PrPSc) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrPC to the pathological isoform led to PrPSc accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells.  相似文献   

6.
There is increasing interest in the role of the glycosylphosphatidylinositol (GPI) anchor attached to the cellular prion protein (PrPC). Since GPI anchors can alter protein targeting, trafficking and cell signaling, our recent study examined how the structure of the GPI anchor affected prion formation. PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc in prion-infected neuronal cell lines and in scrapie-infected primary cortical neurons. In uninfected neurons desialylated PrPC was associated with greater concentrations of gangliosides and cholesterol than PrPC. In addition, the targeting of desialylated PrPC to lipid rafts showed greater resistance to cholesterol depletion than PrPC. The presence of desialylated PrPC caused the dissociation of cytoplasmic phospholipase A2 (cPLA2) from PrP-containing lipid rafts, reduced the activation of cPLA2 and inhibited PrPSc production. We conclude that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation.  相似文献   

7.
Prion diseases are caused by a conformational modification of the cellular prion protein (PrPC) into disease-specific forms, termed PrPSc, that have the ability to interact with PrPC promoting its conversion to PrPSc. In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrPC region involved in the interaction with PrPSc thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrPSc in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.  相似文献   

8.
Prion diseases are a group of fatal neurodegenerative diseases affecting humans and animals. The only identified component of the infectious prion is PrPSc, an aberrantly folded isoform of PrPC. Glycosaminoglycans, which constitute the main receptor for prions on cells, play a complex role in the pathogenesis of prion diseases. For example, while agents inducing aberrant lysosomal accumulation of GAGs such as Tilorone and Quinacrine significantly reduced PrPSc content in scrapie-infected cells, administration of Quinacrine to prion-infected subjects did not improve their clinical status. In this study, we investigated the association of PrPSc with cells cultured with Tilorone. We found that while the initial incorporation of PrPSc was similar in the treated and untreated cells, clearance of PrPSc from the Tilorone-treated cells was significantly impaired. Interestingly, prolonged administration of Tilorone to mice prior to prion infection resulted in a significant delay in disease onset, concomitantly with in vivo accumulation of lysosomal GAGs. We hypothesize that GAGs may complex with newly incorporated PrPSc in lysosomes and further stabilize the prion protein conformation. Over-stabilized PrPSc molecules have been shown to comprise reduced converting activity.  相似文献   

9.
《朊病毒》2013,7(4):383-390
Prion diseases are caused by a conformational modification of the cellular prion protein (PrPC) into disease-specific forms, termed PrPSc, that have the ability to interact with PrPC promoting its conversion to PrPSc. In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrPC region involved in the interaction with PrPSc thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrPSc in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.  相似文献   

10.
The crucial step for the fatal neurodegenerative prion diseases involves the conversion of a normal cellular protein, PrPC, into a fibrous pathogenic form, PrPSc, which has an unusual stability against heat and resistance against proteinase K digestion. A successful challenge to reverse the reaction from PrPSc into PrPC is considered valuable, as it would give a key to dissolving the complex molecular events into thermodynamic and kinetic analyses and may also provide a means to prevent the formation of PrPSc from PrPC eventually in vivo. Here we show that, by applying pressures at kbar range, the “proteinase K-resistant” fibrils (rHaPrPres) prepared from hamster prion protein (rHaPrP [23–231]) by seeding with brain homogenate of scrapie-infected hamster, becomes easily digestible. The result is consistent with the notion that rHaPrPres fibrils are dissociated into rHaPrP monomers under pressure and that the formation of PrPSc from PrPC is thermodynamically controlled. Moreover, the efficient degradation of prion fibrils under pressure provides a novel means of eliminating infectious PrPSc from various systems of pathogenic concern.  相似文献   

11.
12.
Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids β-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids β-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.  相似文献   

13.
Summary 1. Vaccination-induced anti-prion protein antibodies are presently regarded as a promising approach toward treatment of prion diseases. Here, we investigated the ability of five peptides corresponding to three different regions of the bovine prion protein (PrP) to elicit antibodies interfering with PrPSc propagation in prion-infected cells. 2. Rabbits were immunized with free nonconjugated peptides. Obtained immune sera were tested in enzyme-linked immunosorbent assay (ELISA) and immunoblot for their binding to recombinant PrP and cell-derived pathogenic isoform (PrPSc) and normal prion protein (PrPc), respectively. Sera positive in all tests were chosen for PrPSc inhibition studies in cell culture. 3. All peptides induced anti-peptide antibodies, most of them reacting with recombinant PrP. Moreover, addition of the serum specific to peptide 95–123 led to a transient reduction of PrPSc levels in persistently prion-infected cells. 4. Thus, anti-PrP antibodies interfering with PrPSc propagation were induced with a prion protein peptide nonconjugated to a protein carrier. These results point to the potential application of the nonconjugated peptide 95–123 for the treatment of prion diseases.  相似文献   

14.
A hallmark of prion diseases is the conversion of the host-encoded prion protein (PrPC where C is cellular) into an alternatively folded, disease-related isoform (PrPSc, where Sc is scrapie), the accumulation of which is associated with synapse degeneration and ultimately neuronal death. The formation of PrPSc is dependent upon the presence of PrPC in specific, cholesterol-sensitive membrane microdomains, commonly called lipid rafts. PrPC is targeted to these lipid rafts because it is attached to membranes via a glycosylphosphatidylinositol anchor. Here, we show that treatment of prion-infected neuronal cell lines (ScN2a, ScGT1, or SMB cells) with synthetic glycosylphosphatidylinositol analogues, glucosamine-phosphatidylinositol (glucosamine-PI) or glucosamine 2-O-methyl inositol octadecyl phosphate, reduced the PrPSc content of these cells in a dose-dependent manner. In addition, ScGT1 cells treated with glucosamine-PI did not transmit infection following intracerebral injection to mice. Treatment with glucosamine-PI increased the cholesterol content of ScGT1 cell membranes and reduced activation of cytoplasmic phospholipase A2 (PLA2), consistent with the hypothesis that the composition of cell membranes affects key PLA2-dependent signaling pathways involved in PrPSc formation. The effect of glucosamine-PI on PrPSc formation was also reversed by the addition of platelet-activating factor. Glucosamine-PI caused the displacement of PrPC from lipid rafts and reduced expression of PrPC at the cell surface, putative sites for PrPSc formation. We propose that treatment with glucosamine-PI modifies local micro-environments that control PrPC expression and activation of PLA2 and subsequently inhibits PrPSc formation.  相似文献   

15.
Aberrant self-assembly, induced by structural misfolding of the prion proteins, leads to a number of neurodegenerative disorders. In particular, misfolding of the mostly α-helical cellular prion protein (PrPC) into a β-sheet-rich disease-causing isoform (PrPSc) is the key molecular event in the formation of PrPSc aggregates. The molecular mechanisms underlying the PrPC-to-PrPSc conversion and subsequent aggregation remain to be elucidated. However, in persistently prion-infected cell-culture models, it was shown that treatment with monoclonal antibodies against defined regions of the prion protein (PrP) led to the clearing of PrPSc in cultured cells. To gain more insight into this process, we characterized PrP-antibody complexes in solution using a fast protein liquid chromatography coupled with small-angle x-ray scattering (FPLC-SAXS) procedure. High-quality SAXS data were collected for full-length recombinant mouse PrP [denoted recPrP(23–230)] and N-terminally truncated recPrP(89–230), as well as their complexes with each of two Fab fragments (HuM-P and HuM-R1), which recognize N- and C-terminal epitopes of PrP, respectively. In-line measurements by fast protein liquid chromatography coupled with SAXS minimized data artifacts caused by a non-monodispersed sample, allowing structural analysis of PrP alone and in complex with Fab antibodies. The resulting structural models suggest two mechanisms for how these Fabs may prevent the conversion of PrPC into PrPSc.  相似文献   

16.
17.
Limited information is available about conformational differences between the abnormal isoform of prion protein (PrPSc) and cellular prion protein (PrPC) under native conditions. To clarify conformational differences between these two isoforms, PrP‐deficient mice were immunized with brain homogenates of normal and scrapie‐infected animals. All mice generated anti‐PrP antibodies. Peptide array analysis of these serum samples revealed a distinctive epitope of PrPSc consisting of QGSPGGN (PrP41–47) at the N‐terminus. This study demonstrated a conformational dissimilarity at the N‐terminus between PrPSc and PrPC, a finding that may provide novel information about conformational features of PrPSc.  相似文献   

18.
A direct physical interaction of the prion protein isoforms is a key element in prion conversion. Which sites interact first and which parts of PrPc are converted subsequently is presently not known in detail. We hypothesized that structural changes induced by PrPSc interaction occur in more than one interface and subsequently propagate within the PrPC substrate, like epicenters of structural changes. To identify potential interfaces we created a series of systematically-designed mutant PrPs and tested them in prion-infected cells for dominant-negative inhibition (DNI) effects. This showed that mutant PrPs with deletions in the region between first and second α-helix are involved in PrP-PrP interaction and conversion of PrPC into PrPSc. Although some PrPs did not reach the plasma membrane, they had access to the locales of prion conversion and PrPSc recycling using autophagy pathways. Using other series of mutant PrPs we already have identified additional sites which constitute potential interaction interfaces. Our approach has the potential to characterize PrP-PrP interaction sites in the context of prion-infected cells. Besides providing further insights into the molecular mechanisms of prion conversion, this data may help to further elucidate how prion strain diversity is maintained.  相似文献   

19.

Background

Prion diseases are fatal neurodegenerative disorders that can arise sporadically, be genetically inherited or acquired through infection. The key event in these diseases is misfolding of the cellular prion protein (PrPC) into a pathogenic isoform that is rich in β-sheet structure. This conformational change may result in the formation of PrPSc, the prion isoform of PrP, which propagates itself by imprinting its aberrant conformation onto PrPC molecules. A great deal of effort has been devoted to developing protocols for purifying PrPSc for structural studies, and testing its biological properties. Most procedures rely on protease digestion, allowing efficient purification of PrP27-30, the protease-resistant core of PrPSc. However, protease treatment cannot be used to isolate abnormal forms of PrP lacking conventional protease resistance, such as those found in several genetic and atypical sporadic cases.

Principal Findings

We developed a method for purifying pathological PrP molecules based on sequential centrifugation and immunoprecipitation with a monoclonal antibody selective for aggregated PrP. With this procedure we purified full-length PrPSc and mutant PrP aggregates at electrophoretic homogeneity. PrPSc purified from prion-infected mice was able to seed misfolding of PrPC in a protein misfolding cyclic amplification reaction, and mutant PrP aggregates from transgenic mice were toxic to cultured neurons.

Significance

The immunopurification protocol described here isolates biologically active forms of aggregated PrP. These preparations may be useful for investigating the structural and chemico-physical properties of infectious and neurotoxic PrP aggregates.  相似文献   

20.
The agent that causes prion diseases is thought to be identical to PrPSc, a conformer of the normal prion protein PrPC. Recently a novel protein, termed Doppel (Dpl), was identified that shares significant biochemical and structural homology with PrPC. To investigate the function of Dpl in neurogenesis and in prion pathology, we generated embryonic stem (ES) cells harbouring a homozygous disruption of the Prnd gene that encodes Dpl. After in vitro differentiation and grafting into adult brains of PrPC-deficient Prnp0/0 mice, Dpl-deficient ES cell-derived grafts contained all neural lineages analyzed, including neurons and astrocytes. When Prnd-deficient neural tissue was inoculated with scrapie prions, typical features of prion pathology including spongiosis, gliosis and PrPSc accumulation, were observed. Therefore, Dpl is unlikely to exert a cell-autonomous function during neural differentiation and, in contrast to its homologue PrPC, is dispensable for prion disease progression and for generation of PrPSc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号