首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micromolar concentrations of cupric ion (Cu2+) and mercaptans such as cysteine, cysteamine, and homocysteine trigger large and rapid Ca2+ release from skeletal muscle sarcoplasmic reticulum (SR) vesicles. At the concentrations used, Cu2+ alone does not induce Ca2+ release nor does cysteine alone; both are required to induce Ca2+ release from SR. Cu2+ is known to catalyze the autooxidation of cysteine to its disulfide form cystine; Cu2+/mercaptan-induced Ca2+ release appears to be caused by Cu2+-catalyzed formation of a mixed disulfide between the exogenous mercaptan and a critical sulfhydryl on a transmembrane protein. In the oxidized state the SR is highly permeable to Ca2+. Supporting evidence for this interpretation is as follows. The order of Ca2+-releasing reactivity of the mercaptans is the same as the order in which these compounds undergo oxidation to disulfide forms in the presence of Cu2+. Ca2+ efflux induced by cysteine and Cu2+ can be reversed by the addition of the disulfide reducing agent dithiothreitol. Hypochlorous acid and plumbagin, both potential sulfhydryl oxidants, induce rapid Ca2+ efflux from SR vesicles; in addition, Cu2+, which catalyzes H2O2 oxidation of cysteine, enhances H2O2-induced release. Oxidation-induced Ca2+ release from SR can be partially reversed or blocked by ruthenium red or the local anesthetics procaine and tetracaine. The Ca2+ efflux rates are strongly Mg2+ dependent and are significantly higher in heavy SR than in light SR. These data suggest that the Ca2+ efflux thus induced is via the "Ca2+ release channel" and that the oxidation state of a critical sulfhydryl group on this protein may be the principal means by which the Ca2+ permeability of the SR is regulated in vivo.  相似文献   

2.
C Sumbilla  G Inesi 《FEBS letters》1987,210(1):31-36
A radioactive tracer and rapid filtration method was applied to the study of Ca2+ release from sarcoplasmic reticulum (SR) vesicles which were preloaded passively (equilibration with millimolar Ca2+) or actively (in the presence of ATP or acetyl phosphate). The method allows complete substitution of the loading mixture with release medium in constant flow, and time resolution between 0.01 and 10.0 s. Net release can be clearly distinguished from isotope exchange. The latter is prominent in longitudinal SR vesicles. Net Ca2+ release is observed only from cisternal SR vesicles, is Ca2+ (micromolar) dependent, and is accelerated by inactive ATP analogues, or ATP itself, even in the presence of Mg2+. Net release has a strong pH dependence (between 6 and 7), and very little temperature dependence (consistent with a passive channel). In media of physiological significance (1 mM ATP, 1 mM magnesium, and free Ca2+ in the micromolar range), net Ca2+ release proceeds with a rate constant of approx. 100 s-1.  相似文献   

3.
4.
Using quin2, the effects of aliphatic hydrocarbons on the system of Ca(2+)-induced Ca2+ release in isolated membranes of rabbit skeletal muscle terminal cisterns have been studied. The hydrocarbons were inserted into the membranes by means of hydrocarbon-containing liposomes. 2,2,4-Trimethylpentane (isooctane) caused a rapid release of 70-75% of Ca2+ taken up by the terminal cistern vesicles during the Ca(2+)-pump operation. This effect was inhibited by the caffeine-induced Ca2+ release blockers--Mg2+, ruthenium red and tetracaine. The same was observed with a decrease in the concentration of ATP that is known to activate the terminal cistern Ca2+ channels. The effect of 2,2,4-trimethylpentane on the longitudinal cistern fractions practically devoid of Ca(2+)-channels was insignificant. Heptane, hexane and octane caused a slow release of 5-10% of the accumulated Ca2+ from the terminal cistern vesicles; no such effect was induced by decane.  相似文献   

5.
6.
Heavy metal-induced Ca2+ release from sarcoplasmic reticulum   总被引:1,自引:0,他引:1  
Two distinct forms of Ca2+ release from isolated sarcoplasmic reticulum vesicles in response to additions of heavy metals (silver and mercurials) are described. One form of heavy metal-induced Ca2+ release involves the ruthenium red-sensitive Ca2+ release channel localized in terminal cisternae. The other form of heavy metal-induced Ca2+ release appears to involve all portions of the sarcoplasmic reticulum and is insensitive to ruthenium red. This latter form of Ca2+ release occurs over a similar range of heavy metal concentrations as inhibition of the sarcoplasmic reticulum Ca2+ pump but does not appear to be a result solely of such pump inhibition. Both forms of Ca2+ release are inhibited by glutathione, an endogenous constituent of muscle fibers, and by dithiothreitol, agents which prevent sulfhydryl oxidation. To assess the role of any sulfhydryl oxidation in sarcoplasmic reticulum Ca2+ release physiologically, dithiothreitol and glutathione were introduced inside muscle fibers and effects on excitation-contraction coupling examined. The results strongly suggest that sulfhydryl oxidation plays no essential role in skeletal muscle excitation-contraction coupling.  相似文献   

7.
Using a Ca2+-selective electrode and the chlorotetracycline fluorescence technique, the effects of heparin on Ca2+ transport in the sarcoplasmic reticulum (SR) of skeletal muscles in the absence of oxalate were investigated. It was shown that heparin (0.5-10 micrograms/ml) causes a rapid release of 40-50 nmol Ca2+/mg protein from the terminal cistern SR vesicles bound to 130-150 nmol/mg protein of Ca2+ in the presence of ATP. However, heparin has practically no effect on the longitudinal cistern fraction of SR. The effects of heparin can be prevented by ruthenium red. No influence of heparin is observed in the case of the Ca2+-induced release of Ca2+ from the terminal cisterns. When the Ca2+ release is induced by heparin, no Ca2+-induced release of Ca2+ takes place.  相似文献   

8.
Tryptic modification appears to potentiate activation of the Ca2+ channels of isolated sarcoplasmic reticulum vesicles. In the presence of 1 mM free Mg2+ we observe that: 1) cAMP and doxorubicin activation of passive efflux from tryptically modified vesicles is approximately 20-fold greater than from native SR. 2) Ruthenium red inhibits Ca2+ efflux from modified vesicles. 3) The binding affinities and Hill coefficients of activation of efflux by cAMP and doxorubicin are the same in modified vesicles as in native vesicles. 4) Proteolysis stimulates passive efflux from heavy SR much more than from light SR. 5) Stimulation of cAMP- and doxorubicin-activated Ca2+ release is biphasic, whereas Hg2+-activated Ca2+ efflux is monophasic. 6) In the absence of Mg2+, the Ca2+ dependence of cAMP-activated efflux from tryptically modified vesicles is similar to that of native vesicles, with peak efflux rates occurring between approximately 1 and 10 microM Ca2+. 7) The Mg2+ dependence of efflux from modified vesicles is similar to that of native vesicles. 8) SDS-polyacrylamide gels indicate that the Ca2+, Mg2+-ATPase and the high molecular weight ryanodine receptor are both cleaved faster than the stimulation of efflux.  相似文献   

9.
Halothane induces the release of Ca2+ from a subpopulation of sarcoplasmic reticulum vesicles that are derived from the terminal cisternae of rat skeletal muscle. Halothane-induced Ca2+ release appears to be an enhancement of Ca2+-induced Ca2+ release. The low-density sarcoplasmic reticulum vesicles which are believed to be derived from nonjunctional sarcoplasmic reticulum lack the capability of both Ca2+-induced and halothane-induced Ca2+ release. Ca2+ release from terminal cisternae vesicles induced by halothane is inhibited by Ruthenium red and Mg2+, and require ATP (or an ATP analogue), KCl (or similar salt) and extravesicular Ca2+. Ca2+-induced Ca2+ release has similar characteristics.  相似文献   

10.
Ca 2+ uptake in reconstituted sarcoplasmic reticulum vesicles   总被引:3,自引:0,他引:3  
The reconstitution of functional sarcoplasmic reticulum vesicles capable of Ca2+ transport has been achieved. Sarcoplasmic reticulum vesicles are first solubilized with deoxycholate and then reassembled into membranous vesicles by removal of the detergent using dialysis. The Ca2+ pump protein can, by itself, be reconstituted to form membranous vesicles capable of energized Ca2+ binding and uptake. The lipid content of the reconstituted vesicles is about the same as that of the original sarcoplasmic reticulum vesicles. The reconstituted vesicles have an elevated ATPase activity. Ca2+ binding and uptake in the presence of ATP are restored to about 25% and 50%, respectively.  相似文献   

11.
Fragmented sarcoplasmic reticulum (FSR) of bullfrog skeletal muscle was fractionated into light and heavy sarcoplasmic reticulum (LSR and HSR) by sucrose density gradient centrifugation. Morphological and biochemical studies revealed that large parts of LSR and HSR were derived from longitudinal reticulum and terminal cisternae of SR, respectively. The Ca2+ uptake ability and ATPase activity of LSR were higher than those of HSR. Ca2+ release from Ca2+ preloaded SR vesicles by changing the medium from K-gluconate to KCl was suppressed by addition of 0.3 M sucrose or glucose; there was no correlation between Ca2+ release and membrane potential change either in LSR or HSR vesicles. Dantrolene sodium (DAN, 20 microM) had no effect on Ca2+ release. It is concluded that ion-induced Ca2+ release from SR (both HSR and LSR) in the isolated system is due to an osmotic effect.  相似文献   

12.
Ca2+ release from sarcoplasmic reticulum membranes, activated by alkaline pH occurs only when EGTA is present in the release medium. Addition of very low concentrations of Ca2+ to the medium inhibits Ca2+ release. The concentration of free Ca2+ required for 50% inhibition ranges from between 5 and 20 nM in different experiments and/or membrane preparations, irrespective of whether the free Ca2+ concentration is controlled by EGTA or CDTA. Other divalent cations such as Mn2+, Ba2+, Cu2+, Cd2+ and Mg2+ also exert an inhibitory effect on Ca2+ release, with higher or lower potency than that of Ca2+. The inactivation of Ca2+ release by Ca2+ is reversible. We suggest the involvement of high-affinity Ca2+-binding sites in the control of Ca2+ release.  相似文献   

13.
Summary Our interest in the role of sulfhydryl groups (SH) in regulating or altering transport across biological membranes has focused on the significance of a critical SH group associated with the Ca2+-release protein from skeletal muscle sarcoplasmic reticulum (SR). We have shown that binding of heavy metals to this group or oxidation of this sulfhydryl to a disulfide induces rapid Ca2+ release from SR vesicles [1, 2] and induces contraction in skinned muscle fibers [3]. Several models are described in which oxidation and reduction might control the state of the Ca2+-release channel from SR.Abbreviations DTT Dithiothreitol, redox. - oxidation-reduction - SDS Sodium Dodecyl Sulfate - SH Sulfhydryl - SR Sarcoplasmic Reticulum - T-tubule Transverse tubule  相似文献   

14.
Using the rapid filtration technique to investigate Ca2+ movements across the sarcoplasmic reticulum (SR) membrane, we compare the initial phases of Ca2+ release and Ca2+ uptake in malignant hyperthermia susceptible (MHS) and normal (N) pig SR vesicles. Ca2+ release is measured from passively loaded SR vesicles. MHS SR vesicles present a 2-fold increase in the initial rate of calcium release induced by 0.3 microM Ca2+ (20.1 +/- 2.1 vs. 6.3 +/- 2.6 nmol mg-1 s-1). Maximal Ca2+ release is obtained with 3 microM Ca2+. At this optimal concentration, rate of Ca2+ efflux in absence of ATP is 55 and 25 nmol mg-1 s-1 for MHS and N SR, respectively. Ca(2+)-induced Ca2+ release is inhibited by Mg2+ in a dose-dependent manner for both MHS and N pig SR vesicles (K1/2 = 0.2 mM). Caffeine (5 mM) and halothane (0.01% v/v) increase the Ca2+ sensitivity of Ca(2+)-induced Ca2+ release. ATP (5 mM) strongly enhances the rate of Ca2+ efflux (to about 20-40-fold in both MHS and N pig SR vesicles). Furthermore, both types of vesicles do not differ in their high-affinity site for ryanodine (Kd = 12 nM and Bmax = 6 pmol/mg), lipid content, ATPase activity and initial rate of Ca2+ uptake (0.948 +/- 0.034 vs. 0.835 +/- 0.130 mumol mg-1 min-1 for MHS and N SR, respectively). Our results show that MH syndrome is associated to a higher rate of Ca2+ release in the earliest phase of the calcium efflux.  相似文献   

15.
Microsomes derived from pregnant uterine sarcoplasmic reticulum, isolated by differential and sucrose density gradient centrifugation, accumulates Ca2+ in the presence of ATP. Inositol trisphosphate caused release of this Ca2+, in a dose dependent manner. 40% of the Ca2+ that can be released by the ionophore A23187 was released by 5 microM inositol trisphosphate. Removal of Mg by EDTA prior to addition of inositol trisphosphate did not change the course of Ca2+ release. These results indicate that by mobilizing intracellular Ca2+, inositol trisphosphate may be the link between hormonal stimuli and smooth muscle contraction.  相似文献   

16.
Urea, in nondenaturing concentrations, inhibited Ca2+ uptake by sarcoplasmic reticulum vesicles with no concomitant effect on ATP hydrolysis. This inhibition was antagonized by 5 mM oxalate and 20 mM orthophosphate. At concentrations of 0.2 to 1.0 M, urea induced an increase in the Ca2+ efflux from preloaded vesicles diluted in a medium at pH 7.0 containing 2 mM ethylene glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid, 0.1 mM orthophosphate, and 0.1 mM MgCl2. The urea-induced efflux was arrested by ligands of the (Ca(2+)-Mg2+) ATPase, namely, K+, Mg2+, Ca2+, and ADP, and by ruthenium red and the polyamines spermine, spermidine, and putrescine. In the case of polyamines a dissociation between the effect on the efflux and the net Ca2+ uptake was observed, as only the efflux could be blocked by the drugs. Glycine betaine, trimethylamine-N-oxide, and sucrose antagonized the effects of urea on both the net Ca2+ uptake and the rate of Ca2+ efflux.  相似文献   

17.
To further define the possible involvement of sarcoplasmic reticulum calcium accumulation and release in the skeletal muscle disorder malignant hyperthermia (MH), we have examined various properties of sarcoplasmic reticulum fractions isolated from normal and MH-susceptible pig muscle. A sarcoplasmic reticulum preparation enriched in vesicles derived from the terminal cisternae, was further fractionated on discontinuous sucrose density gradients (Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374). The resultant MH-susceptible and normal sarcoplasmic reticulum fractions, designated F0-F4, did not differ in yield, cholesterol and phospholipid content, or nitrendipine binding capacity. Calcium accumulation (0.27 mumol Ca/mg per min at 22 degrees C), Ca2+-ATPase activity (0.98 mumol Pi/mg per min at 22 degrees C), and calsequestrin content were also similar for MH-susceptible and normal sarcoplasmic reticulum fraction F3. To examine sarcoplasmic reticulum calcium release, fraction F3 vesicles were passively loaded with 45Ca (approx. 40 nmol Ca/mg), and rapidly diluted into a medium of defined Ca2+ concentration. Upon dilution into 1 microM Ca2+, the extent of Ca2+-dependent calcium release measured after 5 s was significantly greater for MH-susceptible than for normal sarcoplasmic reticulum, 65.9 +/- 2.8% vs. 47.7 +/- 3.9% of the loaded calcium, respectively. The C1/2 for Ca2+ stimulation of this calcium release (5 s value) from MH-susceptible sarcoplasmic reticulum also appeared to be shifted towards a higher Ca2+-sensitivity when compared to normal sarcoplasmic reticulum. Dantrolene had no effect on calcium release from fraction F3, however, halothane (0.1-0.5 mM) increased the extent of calcium release (5 s) similarly in both MH-susceptible and normal sarcoplasmic reticulum. Furthermore, Mg2+ was less effective at inhibiting, while ATP and caffeine were more effective in stimulating, this Ca2+-dependent release of calcium from MH-susceptible, when compared to normal sarcoplasmic reticulum. Our results demonstrate that while sarcoplasmic reticulum calcium-accumulation appears unaffected in MH, aspect(s) of the sarcoplasmic reticulum Ca2+-induced calcium release mechanism are altered. Although the role of the Ca2+-induced calcium release mechanism of sarcoplasmic reticulum in situ is not yet clear, our results suggest that an abnormality in the regulation of sarcoplasmic reticulum calcium release may play an important role in the MH syndrome.  相似文献   

18.
The data presented in this paper concern a kinetic study of the calcium uptake by sarcoplasmic reticulum vesicles and of the hydrolysis of the substrates which support the process. The results show that substrates which are different from ATP, acetylphosphate, and carbamylphosphate are able to support calcium transport. The technique used to follow the process allows us to detect continuously the changes in the concentration of the calcium present in the external medium. In our experimental conditions the calcium uptake supported by all the high energy substrates tested proceeds for several seconds at a constant rate, presumably corresponding to the “steady state” of the process; furthermore the calcium transport is clearly Ca2+ and Mg2+ dependent: the lowering of the Ca+ concentration in the medium from 10?4 to 10?5m causes a remarkable reduction of the V of the calcium transport and an apparent increase of the affinity of the sarcoplasmic reticulum vesicles for the acylphosphates; in the absence of Mg2+, none of the substrates is able to support the calcium uptake which increases in the presence of rising amounts of Mg2+ in the reaction medium. Furthermore, both the calcium transport and the substrate hydrolysis appear to follow the Michaelis-Menten kinetics in the presence of acylphosphates but not in the presence of ATP. The hydrolytic activity of sarcoplasmic reticulum vesicles on ATP and acylphosphates reveals a clear Mg2+ dependence; furthermore, in the absence of free Ca2+ and in the presence of 5 mm Mg2+, the high energy substrates tested reveal a different susceptibility to the hydrolitic attack by sarcoplasmic reticulum vesicles.  相似文献   

19.
Needle-shaped crystals of the Ca2+-binding protein (CBP) isolated from rabbit skeletal muscle sarcoplasmic reticulum were studied with regard to the influence of Ca2+, K+, and H+ on its solubility and cation binding. The solubility of CBP is sharply decreased with concentration of Ca2+, whereas K+ increased it. Aggregation of the CBP and crystal formation is correlated with the binding of Ca2+. The Ca2+ bound to the crystalline CBP is two to three times higher than that of the soluble form. A strong apparent positive cooperative behavior of Ca2+ binding by CBP was observed concomitant with the shift in equilibrium from the soluble to the crystalline form. From the steepest Hill slope we obtained Hill coefficients of 3.3 for soluble CBP and 14 for the transition between soluble and crystalline forms of CBP. A detailed treatment is presented to validate the applicability of Hill plots for the combined binding and crystallization process. Two-thirds of the Ca2+-binding sites were K+ sensitive and one-third were K+ insensitive. An increase in H+ concentration decreased the Ca2+ binding by crystalline CBP without affecting its solubility, with a pK value of 6.2 determined for this process. These results indicate that the equilibrium between the soluble and crystalline forms of CBP is determined by the amount and nature of the bound cations, Ca2+, K+, and H+. They suggest the possibility that a cycle of aggregation and solubilization of CBP attends the uptake and release of Ca2+ in the sarcoplasmic reticulum, respectively.  相似文献   

20.
The Ca2+ actively accumulated by sarcoplasmic reticulum isolated from skeletal muscle is composed of two fractions; one represented by intravesicular free Ca2+ and another represented by Ca2+ selectively bound to the membranes. Both of these Ca2+ fractions depend on ATP, although it is not clear whether ATP hydrolysis is essential for accumulation of the second Ca2+ fraction. The existence of the membrane-bound Ca2+ induced by ATP is clearly shown in experiments in which the Ca2+ retention by sarcoplasmic reticulum is measured in the presence and in the absence of X-537A, a Ca2+ ionophore, which makes the membrane permeable to Ca2+. Thus, in the presence of X-537A all Ca2+ accumulated due to ATP is bound to the membranes. This membrane-bound Ca2+ represents about 30 nmol/mg protein in the range of external pCa values of 7 to 3.5. The magnitude of this Ca2+ fraction is slightly higher whether or not the experiments are performed in the presence of oxalate, which greatly increased the intravesicular Ca2+ accumulation. Furthermore, taking advantage of the impermeability of sarcoplasmic reticulum to EGTA, it is possible to show the existence of the membrane-bound Ca2+ as a distinct fraction from that which exists intravesicularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号