首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
TCR stimulation by Ag or anti-receptor antibodies in murine T cells results in the activation of two independent protein kinases, protein kinase C (PKC) and a protein tyrosine kinase. Similarly, stimulation of murine Thy-1 or Ly-6 with mAb also results in activation of both of these kinase pathways. Tyrosine phosphorylation in all cases occurs on the TCR zeta-chain. It is known that Ag and anti-receptor antibodies activate PKC in human T cells. In this study we demonstrate that mitogen or anti-CD3 antibodies activate tyrosine phosphorylation of the human TCR-zeta-chain. PMA, which activates PKC, does not result in zeta-chain tyrosine phosphorylation. Stimulation of human T cells by antibodies that bind the CD2 molecule is an alternate mode of inducing T cell proliferation. These antibodies surprisingly do not induce tyrosine phosphorylation of the zeta-chain. Thus, different methods of cellular activation can result in distinguishable patterns of receptor-mediated biochemical signaling events.  相似文献   

3.
Interaction of CD2 with its ligand, LFA-3, in human T cell proliferation   总被引:9,自引:0,他引:9  
Recently, it has been demonstrated that lymphocyte function-associated Ag (LFA-3) is a natural ligand for CD2 and that this receptor-ligand interaction functions in cell-cell adhesion. In this report, we demonstrate that LFA-3 plays a role in T cell activation. L cells were transfected with human genomic DNA and sorted for expression of LFA-3. We demonstrate that LFA-3+ L cells, together with anti-CD3 mAb or with suboptimal doses of PHA, stimulate proliferation of human peripheral blood T cells. Furthermore, thymocyte proliferation was induced by LFA-3+ L cells and suboptimal doses of PHA. Proliferation was inhibited by mAb directed against either CD2 or LFA-3. Stimulation of thymocytes by the combination of PHA and LFA-3+ L cells resulted in the increased expression of the IL-2R, as well as of the surface Ag 4F2, transferrin receptor, and HLA-DR. These data support the conclusion that LFA-3 plays a role in CD2-dependent T cell activation. LFA-3 is widely distributed and is expressed on all APC and target cells. Thus, the ability of the CD2/LFA-3 interaction to costimulate with an anti-CD3 mAb suggests that the CD2/LFA-3 interaction may be involved not only in an Ag-independent alternate pathway of T cell activation but also in Ag-specific T cell activation.  相似文献   

4.
To explore the relationship between CD4 and CD3/Ti on the T cell surface, we have studied a panel of Ag-specific Th cell lines and clones, as well as resting and mitogen-activated CD4+ cells. Our results show that exposure of Th cells to their specific antigenic stimuli, but not to irrelevant stimuli, induced the rapid disappearance of approximately 20 to 35% of CD3 and CD4 molecules. The modulation of these molecules was detected in less than 1 h, became maximal at 12 h, and recovered thereafter in parallel. Treatment of Th cells with anti-CD4 antibody prevented Ag-induced modulation of CD3, and treatment with anti-CD3 blocked modulation of CD4. In the absence of Ag, treatment of these cells with an antibody (WT-31) directed at a conformational determinant within CD3/Ti or with the combination of anti-CD3 antibody and goat anti-mouse Ig, also resulted in significant modulation of CD4. Similar treatment of PHA-activated CD4+ T cells with anti-CD3/Ti antibodies also induced CD4 modulation; however, the same antibodies failed to affect CD4 expression on fresh resting T cells. These results indicate that on activated, but not resting T cells, CD4 molecules can be physically associated with CD3/Ti. We postulate that this association is essential for efficient Th cell activation, and further that the ability of anti-CD4 antibodies to inhibit helper functions is due to their prevention of CD4-CD3/Ti interaction on the T cell surface.  相似文献   

5.
The CD4 antigen: physiological ligand and HIV receptor   总被引:61,自引:0,他引:61  
Q J Sattentau  R A Weiss 《Cell》1988,52(5):631-633
  相似文献   

6.
7.
In this report, we have examined the expression of the T cell survival signals, OX40 ligand (OX40L) and CD30 ligand (CD30L) on CD4(+)CD3(-)CD11c(-)B220(-)IL-7Ralpha(+) inducer cells from birth to adulthood in mice. We found that adult but not neonatal inducer cells expressed high levels of OX40L and CD30L, whereas their expression of TNF-related activation-induced cytokine (TRANCE) and receptor activator of NF-kappaB (RANK) was comparable. The failure of neonatal inducer cells to express the ligands that rescue T cells helps to explain why exposure to Ag in neonatal life induces tolerance rather than immunity. The expression of OX40L and CD30L on inducer cells increased gradually in the first few weeks of life achieving essentially normal levels around the time mice were weaned. We found that IL-7 signaling through the common cytokine receptor gamma-chain was critical for the optimal expression of both TNF-related activation-induced cytokine and CD30L but not OX40L. Furthermore, glucocorticoids, which potently suppress T effector function, did not influence the expression of OX40L and CD30L in the presence of IL-7.  相似文献   

8.
Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+) CD57(+) CD7(-) phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+) T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.  相似文献   

9.
Defining the cellular and molecular mechanisms of interaction of developing thymocytes with nonlymphoid cells of the thymic microenvironment is critical for understanding normal thymus function. We have previously shown that the CD2/LFA-3 adhesion pathway is important in the interaction of thymocytes with a variety of LFA-3+ nonlymphoid thymic microenvironment cell types. Moreover, T cell activation via the CD2 (alternative, Ag independent) pathway is considered an important mechanism for intrathymic T cell proliferation. To study the relevance of CD2/LFA-3 interactions to human thymocyte activation, we have used purified LFA-3 Ag in several in vitro assays of thymocyte proliferation. Whereas LFA-3 Ag alone did not induce thymocyte proliferation, LFA-3 Ag in combination with the anti-CD2 antibody, CD2.1, and rIL-2 induced marked thymocyte proliferation. Additionally, the anti-CD28 antibody, Kolt2, could substitute for rIL-2, resulting in thymocyte activation induced by LFA-3 Ag in combination with antibodies CD2.1 and Kolt2. In both triggering systems, LFA-3 induced thymocyte activation was dependent upon the concentration of LFA-3 Ag. LFA-3 Ag-dependent thymocyte activation was directed primarily toward CD1-, mature thymocytes. Finally, intact SRBC that express the sheep homolog of LFA-3, T11TS, in combination with antibody CD2.1 and rIL-2 could also induce thymocyte activation. These data suggest that interaction of LFA-3 molecules with thymocyte CD2 molecules may provide a component of the stimulus for normal intrathymic thymocyte activation leading to thymocyte proliferation.  相似文献   

10.
The lung is an important entry site for respiratory pathogens such as influenza A virus. In order to combat such invading infectious agents, effector/memory T cells home to the lung and other peripheral tissues as well as lymphoid organs. In this process, chemokines and their receptors fulfill important roles in the guidance of T cells into such organs and specialized microenvironments within tissues. In this study, we determined if CD4(+) T cells residing in different lung compartments and draining lymph nodes of influenza A virus-infected and na?ve mice express receptors allowing their recirculation into secondary lymphoid tissues. We found high levels of l-selectin and CC chemokine receptor 7 (CCR7) expression in lung-derived CD4(+) T cells, similar to that detected on T cells in secondary lymphoid organs. Upon influenza A virus infection, the bulk of gamma interferon-positive (IFN-gamma(+)) and IFN-gamma(-) CD4(+) T cells recovered from lung parenchyma retained functional CCR7, whereas virus-specific IFN-gamma-producing T cells were CCR7(-). In contrast, a majority of virus-specific IFN-gamma(+) T cells in the lung draining lymph node were CCR7(+). Independent of infection, CD4(+) T cells obtained from the lung airways exhibited the lowest expression level of l-selectin and CCR7, indicating that T cells at this anatomical site represent the most differentiated effector cell type, lacking the ability to recirculate. Our results suggest that effector/memory T cells that enter inflammatory sites retain functional CCR7 expression, which is lost only upon response to viral antigen and after localization to the final effector site.  相似文献   

11.
To define early stages of T cell maturation during human fetal thymic development, we have used mAb reactive with CD2, CD3, and TCR molecules in indirect immunofluorescence assays on a series of early human fetal thymic specimens. Using a technique of quantitating the relative proportions of fluorescent-positive cells present in tissue sections, we found at 8.5 wk of gestational age after arrival of CD7+ T cell precursors into the thymic rudiment, 60% of thymic CD7+ cells were CD2+, 4% were CD3+ and none was TCR-delta+ or TCR beta+. Moreover, cells reactive with anti-CD2 antibodies against T11(2) and T11(3) epitopes of CD2 as well as thymic stromal cells expressing the CD2 ligand, lymphocyte function associated Ag-3, were also present at 8.5 wk. From 9.5 wk to birth TCR beta+ cells increased to include greater than 90% of all CD7+ cells while TCR-delta+ cells fell from a peak of 11% of CD7+ cells at 9.5 wk to 1% of CD7+ cells at birth. These data suggest that epitopes of CD2 molecules are expressed early on during fetal thymic development. Moreover, these data suggest that CD7+, CD2+, cytoplasmic CD3+ T cell precursors in man give rise to both TCR-delta+ T cells as well as to T cells expressing TCR-alpha beta.  相似文献   

12.
13.
Human cytotoxic T lymphocyte clones form conjugates with both antigen-positive and antigen-negative lymphoblastoid cells. Conjugates with antigen-negative targets form as rapidly, and are almost as frequent, as those with antigen-positive targets; both types are strong. Monoclonal antibodies against lymphocyte function-associated antigen (LFA)-1, CD2, and LFA-3 (or their Fab fragments) each consistently inhibit conjugate formation, but only partially; mixes of alpha LFA-1 with either CD2 monoclonal antibodies or alpha LFA-3 cause complete inhibition. Our previous studies have demonstrated two distinct pathways of antigen-independent conjugate (AIC) formation, one involving LFA-1 and the other involving CD2/LFA-3. The present studies showing supra-additive inhibition with mixes of Fab indicate that at least a major fraction of the conjugates involve T cells which utilize both pathways. Preincubation studies (and restricted expression for CD2) demonstrate that in the CD2/LFA-3 pathway, CD2 is critical on the effector and LFA-3 on the target and that in the LFA-1 pathway, LFA-1 is critical on the effector. Analysis of conjugate formation by primary allosensitized T cells confirms the critical findings made with T cell clones. Among a panel of antigen-negative "target" cell lines tested, there is wide variation in the number of AIC formed with cytotoxic T lymphocyte clones; this variation correlates partially with differences in level of expression of LFA-3. Both pathways of adhesion are utilized in AIC formation with all five targets tested, but there was variation between targets in the relative contribution by each pathway. Studies of inhibition of lysis (rather than conjugate formation) support the relevance of the two-pathway model to the lytic process as a whole. These studies demonstrate the general involvement of two pathways of adhesion in human T cell interactions: one involving T cell LFA-1 and the other involving T cell CD2 binding to target cell LFA-3.  相似文献   

14.
15.
16.
17.
The inducible costimulator receptor (ICOS) is a third member of the CD28 receptor family that regulates T cell activation and function. ICOS binds to a newly identified ligand on antigen presenting cells different from the CD152 ligands CD80 and CD86. We used soluble ICOSIg and a newly developed murine anti-human ICOS ligand (ICOSL) monoclonal antibody to further characterize the ICOSL during ontogeny of antigen presenting cells. In a previous study, we found that ICOSL is expressed on monocytes, dendritic cells, and B cells. To define when ICOSL is first expressed on myeloid antigen presenting cells, we examined ICOSL expression on CD34(+) cells in bone marrow. We found that CD34(bright) cells regardless of their myeloid commitment were ICOSL(-), whereas ICOSL was first expressed when CD34 expression diminished and the myeloid marker CD33 appeared. However, acute myeloid leukemia cells were ICOSL-negative, whereas among B-cell malignancies only some cases of the most mature tumors such as prolymphocytic leukemia and hairy cell leukemia were positive. Next, we investigated purified CD34(+) hematopoietic progenitor cells that did not constitutively express ICOSL but were induced to express ICOSL within 12 h after granulocyte/macrophage colony-stimulating factor/tumor necrosis factor alpha (TNF-alpha) stimulation. Interestingly, ICOSL was induced prior to CD80/CD86 induction on CD34(+) cells so that ICOSL was expressed in the absence of CD80/CD86. This suggests that ICOSL is an early differentiation marker along the monocytic/dendritic maturation pathway. Induction of ICOSL was dependent on TNF-alpha and was regulated via NF-kappa B as revealed by use of inhibitors specific for I kappa B alpha phosphorylation such as BAY 11-7082 and BAY 11-7085. The antigen presenting capacity of TNF-alpha stimulated CD34(+) cells was strongly inhibited by ICOSIg fusion proteins or by NF-kappa B inhibition. Thus, TNF-alpha-induced ICOSL expression seemed to be functionally important for the costimulatory capacity of CD34(+) hematopoietic progenitor cells.  相似文献   

18.
Genomic DNA was isolated from 29 t strains and 4 congenic lines of mice, digested with restriction endonucleases, and hybridized with a probe representing the complement component 4 (C4) gene. All but one of the enzymes revealed restriction fragment length polymorphism in this sample of C4-related genes. Double digestion analysis suggested the presence of three C4 gene copies in some of the t chromosomes and two copies in others. The enzymes distinguished 16 different haplotypes among the 33 strains tested. Based on their restriction fragment length patterns, the t strains could be divided into four groups with strains in each group more closely related to each other with respect to their C4-region genes than strains belonging to different groups. At least three of these four groups represent different branches of the evolutionary tree constructed for the t chromosomes. The C4-related genes of the chromosomes are in strong linkage disequilibrium with the class II genes of the H-2 complex. Typing for the Ss and Slp allotypes of C4 has revealed the presence of the Ss1 phenotype in two t strains and of the Slpa phenotype in one strain.  相似文献   

19.
NK T (NKT) cells are an important component of the innate immune system and recognize the MHC class I-like CD1d molecule. NKT cells possess significant immunoregulatory activity due to their rapid secretion of large quantities of pro- and anti-inflammatory cytokines following CD1d-dependent stimulation. Because the innate immune system is programmed to respond to a multitude of diverse stimuli and must be able to quickly differentiate between pathogenic and endogenous signals, we hypothesized that, apart from stimulation via the TCR (e.g., CD1d-dependent activation), there must be multiple activation pathways that can be triggered through other cell surface receptors on NKT cells. Therefore, we analyzed the ability of CD44, a structurally diverse cell surface receptor expressed on most cells, to stimulate murine NKT cells, compared with conventional T cells. Stimulation of CD44 through Ab cross-linking or binding to its natural ligands hyaluronan and osteopontin induced NKT cells to secrete cytokines, up-regulate activation markers, undergo morphological changes, and resist activation-induced cell death, whereas conventional T cells only exhibited changes in morphology and protection from activation-induced cell death. This CD44-specific stimulation of NKT cells correlated with their ability to bind hyaluronan. Thus, fundamental differences in CD44 function between these lymphocyte subsets suggest an important biological role for CD44 in the innate immune response.  相似文献   

20.
T cell deletion and/or inactivation were considered the leading mechanisms for neonatal tolerance. However, recent investigations have indicated that immunity develops at the neonatal stage but evolves to guide later T cell responses to display defective and/or biased effector functions. Although neonatal-induced T cell modulation provides a useful approach to suppress autoimmunity, the mechanism underlying the biased function of the T cells remains unclear. In prior studies, we found that exposure of newborn mice to Ig-PLP1, a chimera expressing the encephalitogenic proteolipid protein (PLP) sequence 139-151, induced deviated Th2 lymph node cells producing IL-4 instead of IL-2 and anergic splenic T cells that failed to proliferate or produce IFN-gamma yet secreted significant amounts of IL-2. However, if assisted with IFN-gamma or IL-12, these anergic splenic T cells regained full responsiveness. The consequence of such biased/defective T cells responses was protection of the mice against experimental allergic encephalomyelitis. In this study, investigations were performed to delineate the mechanism underlying the novel form of IFN-gamma-dependent splenic anergy. Our findings indicate that CD40 ligand expression on these splenic T cells is defective, leading to noneffective cooperation between T lymphocytes and APCs and a lack of IL-12 production. More striking, this cellular system revealed a requirement for IL-2R expression for CD40 ligand-initiated, IL-12-driven progression of T cells into IFN-gamma production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号