共查询到20条相似文献,搜索用时 0 毫秒
1.
Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na(+)-Ca2+ exchanger and protein kinase C
下载免费PDF全文

Activity-dependent modulation of synaptic transmission is an essential mechanism underlying many brain functions. Here we report an unusual form of synaptic modulation that depends on Na+ influx and mitochondrial Na(+)-Ca2+ exchanger, but not on Ca2+ influx. In Ca(2+)-free medium, tetanic stimulation of Xenopus motoneurons induced a striking potentiation of transmitter release at neuromuscular synapses. Inhibition of either Na+ influx or the rise of Ca2+ concentrations ([Ca2+]i) at nerve terminals prevented the tetanus-induced synaptic potentiation (TISP). Blockade of Ca2+ release from mitochondrial Na(+)-Ca2+ exchanger, but not from ER Ca2+ stores, also inhibited TISP. Tetanic stimulation in Ca(2+)-free medium elicited an increase in [Ca2+]i, which was prevented by inhibition of Na+ influx or mitochondrial Ca2+ release. Inhibition of PKC blocked the TISP as well as mitochondrial Ca2+ release. These results reveal a novel form of synaptic plasticity and suggest a role of PKC in mitochondrial Ca2+ release during synaptic transmission. 相似文献
2.
Biochemical responses in activated human neutrophils mediated by protein kinase C and a Ca2+-requiring proteinase 总被引:8,自引:0,他引:8
S Pontremoli E Melloni M Michetti O Sacco F Salamino B Sparatore B L Horecker 《The Journal of biological chemistry》1986,261(18):8309-8313
Low concentrations of phorbol 12-myristate 13-acetate (PMA) elicit a specific response in human neutrophils, characterized by the production of oxygen radicals and the release into the medium of a membrane-bound serine proteinase (Pontremoli, S., Melloni, E., Michetti, M., Sacco, O., Sparatore, B., Salamino, F., Damiani, G. and Horecker, B. L. (1986) Proc. Natl. Acad. Sci. U. S. A., 83, 1685-1689). The following evidence indicates that this response is mediated by membrane-bound protein kinase C: 1) it is blocked by inhibitors of protein kinase C; and 2) it is enhanced in cells preloaded with leupeptin which prevents proteolysis of protein kinase C and its subsequent dissociation from the cell membrane. This response is not accompanied by significant exocytosis of granule enzymes. With higher concentrations of PMA, and more particularly on stimulation with formylmethionyl-leucyl-phenylalanine (fMLP) plus cytochalasin B, a substantial exocytosis of constituents of both specific and azurophil granules is observed. With fMLP, exocytosis of granule enzymes is the predominant event, with little production of H2O2 and negligible release of membrane-bound serine proteinase. Exocytosis promoted either by a high concentration of PMA or by fMLP is inhibited by leupeptin, indicating that it is due to the action of an intracellular Ca2+-dependent thiol proteinase (calpain), either directly or by conversion by calpain of membrane-bound protein kinase C to the soluble Ca2+/phospholipid-independent form. Intracellular mobilization of Ca2+ is also observed following stimulation with either PMA or fMLP, but only the latter results in a net increase in the intracellular concentration of free Ca2+; under these conditions maximum exocytosis of granule contents is observed. 相似文献
3.
Conversion of protein kinase C from a Ca2+-dependent to an independent form of phorbol ester-binding protein by digestion with trypsin 总被引:6,自引:0,他引:6
Tryptic fragments of protein kinase C containing the kinase (45 KDa) and phorbol ester-binding activity (38 KDa) were separated by Mono O column chromatography. The purified phorbol ester-binding fragment exhibits a higher affinity for phosphatidylserine than the native enzyme but comparable Kd for [3H]phorbol 12,13-dibutyrate as the native enzyme. This proteolytic fragment binds phorbol ester equally efficient either in the presence or absence of Ca2+ and the addition of the kinase fragment did not restore the Ca2+-requirement for the binding. These results indicate that protein kinase C is composed of two functionally distinct units which can be expressed independently after limited proteolysis with trypsin. 相似文献
4.
We examined the role of protein kinase C (PKC) in the mechanism and regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) oscillations elicited by an increase in the extracellular concentration of Ca(2+) ([Ca(2+)](e)) in human embryonic kidney 293 cells expressing the Ca(2+)-sensing receptor (CaR). Exposure to the PKC inhibitors bisindolylmaleimide I (GF I) or Ro-31-8220 converted oscillatory responses to transient, non-oscillatory responses, significantly reducing the percentage of cells that showed [Ca(2+)](i) oscillations but without decreasing the overall response to increase in [Ca(2+)](e). Exposure to 100 nm phorbol 12,13-dibutyrate, a direct activator of PKC, eliminated [Ca(2+)](i) oscillations. Addition of phorbol 12,13-dibutyrate at lower concentrations (3 and 10 nm) did not eliminate the oscillations but greatly reduced their frequency in a dose-dependent manner. Co-expression of CaR with constitutively active mutants of PKC (either epsilon or beta(1) isoforms) also reduced [Ca(2+)](i) oscillation frequency. Expression of a mutant CaR in which the major PKC phosphorylation site is altered by substitution of alanine for threonine (T888A) eliminated oscillatory behavior, producing [Ca(2+)](i) responses almost identical to those produced by the wild type CaR exposed to PKC inhibitors. These results support a model in which phosphorylation of the CaR at the inhibitory threonine 888 by PKC provides the negative feedback needed to cause [Ca(2+)](i) oscillations mediated by this receptor. 相似文献
5.
Regulation of erythrocyte Ca2+ pump activity by protein kinase C 总被引:8,自引:0,他引:8
Using either inside-out vesicles (IOV) prepared from human erythrocytes or purified Ca2+-ATPase from the same source, the effects of protein kinase C (Ca2+/phospholipid-dependent enzyme) on Ca2+ transport and Ca2+-ATPase activity were measured. Incubation of IOV with protein kinase C in the presence, but not absence, of either 12-O-tetradecanoylphorbol-13-acetate or diolein led to a Ca2+-dependent stimulation of ATP-dependent calcium uptake. The effect was a 5-7-fold increase of Vmax without a significant change in the apparent Km for Ca2+. By comparison, the effect of calmodulin was a 14-fold stimulation of Vmax and a 4-fold reduction in apparent Km. The effect of protein kinase C and calmodulin on Ca2+ uptake were nearly additive. Stimulation of IOV Ca2+ transport by protein kinase C was entirely reversible by treatment of activated IOV with alkaline phosphatase. Incubation of purified Ca2+-ATPase with protein kinase C in the presence of 12-O-tetradecanoylphorbol-13-acetate or diolein led to a stimulation of Ca2+-dependent ATPase activity. These results indicate that protein kinase C stimulates the activity of the plasma membrane Ca2+ pump by a direct effect on the pump protein. 相似文献
6.
Prostacyclin inhibits platelet aggregation induced by phorbol ester or Ca2+ ionophore at steps distal to activation of protein kinase C and Ca2+-dependent protein kinases. 总被引:1,自引:1,他引:1
下载免费PDF全文

Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases. 相似文献
7.
cis-Fatty acids such as oleic acid or linoleic acid have been previously shown to induce full activation of protein kinase C in the absence of Ca2+ and phospholipids (Murakami, K., and Routtenberg, A. (1985) FEBS Lett. 192, 189-193; Murakami, K., Chan, S.Y., and Routtenberg, A. (1986) J. Biol. Chem. 261, 15424-15429). In this study, we have investigated the effects of various metal ions on protein kinase C activity without the interference of Ca2+ since cis-fatty acid requires no Ca2+ for protein kinase C activation. Here we report a specific interaction of Zn2+ with protein kinase C in either a positive or negative cooperative fashion in concert with Ca2+. At low concentrations (approximately 5 microM) of Ca2+, Zn2+ enhances protein kinase C activity induced by both oleic acid and phosphatidylserine/diolein. In contrast, Zn2+ inhibits the activity at higher concentrations (over 50 microM) of Ca2+. In the absence of Ca2+, Zn2+ shows no effect on protein kinase C activity. Our results suggest that Zn2+ does not recognize or interact with protein kinase C in the absence of Ca2+, that protein kinase C possesses high and low affinity Ca2+-binding sites, and that at least one Zn2+-binding site exists which is distinct from Ca2+-binding sites. 相似文献
8.
Pinton P Leo S Wieckowski MR Di Benedetto G Rizzuto R 《The Journal of cell biology》2004,165(2):223-232
The modulation of Ca2+ signaling patterns during repetitive stimulations represents an important mechanism for integrating through time the inputs received by a cell. By either overexpressing the isoforms of protein kinase C (PKC) or inhibiting them with specific blockers, we investigated the role of this family of proteins in regulating the dynamic interplay of the intracellular Ca2+ pools. The effects of the different isoforms spanned from the reduction of ER Ca2+ release (PKCalpha) to the increase or reduction of mitochondrial Ca2+ uptake (PKCzeta and PKCbeta/PKCdelta, respectively). This PKC-dependent regulatory mechanism underlies the process of mitochondrial Ca2+ desensitization, which in turn modulates cellular responses (e.g., insulin secretion). These results demonstrate that organelle Ca2+ homeostasis (and in particular mitochondrial processing of Ca2+ signals) is tuned through the wide molecular repertoire of intracellular Ca2+ transducers. 相似文献
9.
Although T-type Ca2+ channels have been implicated in numerous physiological functions, their regulations by protein kinases have been obscured by conflicting reports. We investigated the effects of protein kinase C (PKC) on Ca(v)3.2 T-type channels reconstituted in Xenopus oocytes. Phorbol-12-myristate-13-acetate (PMA) strongly enhanced the amplitude of Ca(v)3.2 channel currents (approximately 3-fold). The augmentation effects were not mimicked by 4alpha-PMA, an inactive stereoisomer of PMA, and abolished by preincubation with PKC inhibitors. Our findings suggest that PMA upregulates Ca(v)3.2 channel activity via activation of oocyte PKC. 相似文献
10.
11.
Ca2+ phospholipid-dependent and independent phosphorylation of synthetic peptide substrates by protein kinase C 总被引:1,自引:0,他引:1
Several synthetic peptides reproducing fragments of protamines have been used as model substrates for Ca2+/phospholipid-dependent protein kinase C, tested both in the absence of any effector (basal conditions) and upon activation by either Ca2+ and phosphatidylserine (or diacylglycerol) or limited proteolysis. Only the peptide Arg4-Tyr-Gly-Ser-Arg6-Tyr [Ga(52-65)] shares the unique property of protamines of being readily phosphorylated even under basal conditions. Optimal activity in the absence of effectors is observed with Tris/HCl buffer pH 7.5; Pipes and Hepes are less effective at pH 7.5, and at pH 6.5 basal phosphorylation is reduced. Under the best conditions for basal phosphorylation of Ga(52-65), its derivative with ornithine replaced for arginine and those corresponding to its C-terminal fragments Gly-Ser-Arg6-Tyr [Ga(57-65)] and Gly-Ser-Arg3 [Ga(57-61)], as well as the peptides Pro-Arg5-Ser2-Arg-Pro-Val-Arg [Th(1-12)], Arg4-Tyr-Arg2-Ser-Thr-Val-Ala [Th(13-23)] and Arg2-Leu-Ser2-Leu-Arg-Ala are not significantly affected though all of them, like histones, are more or less readily phosphorylated upon activation of protein kinase C by Ca2+/phosphatidylserine. The peptide Ser2-Arg-Pro-Val-Arg [Th(7-12)] however, corresponding to the C-terminal part of Th(1-12), is not phosphorylated even in the presence of activators. Limited proteolysis can roughly mimic the Ca2+/phosphatidylserine effect inducing however different extents of activation depending on the nature of the peptide substrates. Our results support the following two conclusions. Basal phosphorylation by protein kinase C in the absence of any effector requires peptide substrates whose target residue(s) are included between two extended arginyl blocks and is also dependent on pH and nature of the buffer. Peptides having extended clusters of either arginyl or ornithyl residues on the C-terminal side of serine are also readily phosphorylated, but they need activation of protein kinase by either Ca2+/phosphatidylserine or limited proteolysis. The same is true of peptides having basic residues only on the N-terminal side, or even on both sides but in limited number. 相似文献
12.
Ca2+ mobilization primes protein kinase C in human platelets. Ca2+ and phorbol esters stimulate platelet aggregation and secretion synergistically through protein kinase C. 总被引:4,自引:2,他引:4
下载免费PDF全文

Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets. 相似文献
13.
The mechanisms of muscarinic receptor-linked increase in cAMP accumulation in SH-SY5Y human neuroblastoma cells has been investigated. The dose-response relations of carbachol-induced cAMP synthesis and carbachol-induced rise in intracellular free Ca2+ were similar. The stimulated cAMP synthesis was inhibited by about 50% when cells were entrapped with the Ca2+ chelator BAPTA or in the presence of the protein kinase C (PKC) inhibitor staurosporine. Production of cAMP could be induced also by the Ca2+ ionophore, ionomycin and by TPA, an activator of PKC. When added together TPA and ionomycin had a synergistic effect. When cAMP synthesis was activated with cholera toxin, PGE1 or PGE1 + pertussis toxin carbachol stimulated cAMP production to the same extent as in control cells. Ca2+ and protein kinase C thus seem to be the mediators of muscarinic-receptor linked cAMP synthesis by a direct action on adenylate cyclase. 相似文献
14.
Myristate (C14:0) was found to significantly activate partially purified rat brain Ca(2+)- and phospholipid-dependent protein kinase (PKC). The Ka value, the concentration needed for half maximum activation, for C14:0 in the presence of 1 microM Ca2+ and 20 microM phosphatidylserine (PS) was 20 microM. This activation required Ca2+ and acidic phospholipid and was associated with a decreased Ka for Ca2+ of the enzyme to 10 microM in an analogous fashion as dioleoylglycerol (DO) or phorbol myristate acetate (PMA). The phospholipid requirement for the activation was concentration dependent and was inhibited by 1-(5-isoquinolinesulfonyl)-methylpiperazine dihydrochloride (H-7), a inhibitor of this enzyme. The concentration of H-7 required for half inhibition of the enzyme was about 15 microM and maximum inhibition was about 75%. The concentration profile of cytoplasmic proteins phosphorylated by C14:0-activated PKC was similar to that by PMA-activated PKC. The 47 kDa protein of guinea pig neutrophil was also phosphorylated by the C14:0-activated PKC. It is further discussed whether PKC can function as signal transduction for stimulus-mediated generation of superoxide in neutrophils. 相似文献
15.
Synaptotagmins represent a family of neuronal proteins thought to function in membrane traffic. The best characterized synaptotagmin, synaptotagmin I, is essential for fast Ca2+-dependent synaptic vesicle exocytosis, indicating a role in the Ca2+ triggering of membrane fusion. Synaptotagmins contain two C2 domains, the C2A and C2B domains, which bind Ca2+ and may mediate their functions by binding to specific targets. For synaptotagmin I, several putative targets have been identified, including the SNARE proteins syntaxin and SNAP-25. However, it is unclear which of the many binding proteins are physiologically relevant. Furthermore, more than 10 highly homologous synaptotagmins are expressed in brain, but it is unknown if they execute similar binding reactions. To address these questions, we have performed a systematic, unbiased study of proteins which bind to the C2A domains of synaptotagmins I-VII. Although the various C2A domains exhibit similar binding activities for phospholipids and syntaxin, we found that they differ greatly in their protein binding patterns. Surprisingly, none of the previously characterized binding proteins for synaptotagmin I are among the major interacting proteins identified. Instead, several proteins that were not known to interact with synaptotagmin I were bound tightly and stoichiometrically, most prominently the NSF homologue VCP, which is thought to be involved in membrane fusion, and an unknown protein of 40 kDa. Point mutations in the Ca2+ binding loops of the C2A domain revealed that the interactions of these proteins with synaptotagmin I were highly specific. Furthermore, a synaptotagmin I/VCP complex could be immunoprecipitated from brain homogenates in a Ca2+-dependent manner, and GST-VCP fusion proteins efficiently captured synaptotagmin I from brain. However, when we investigated the tissue distribution of VCP, we found that, different from synaptic proteins, VCP was not enriched in brain and exhibited no developmental increase paralleling synaptogenesis. Moreover, binding of VCP, which is an ATPase, to synaptotagmin I was inhibited by both ATP and ADP, indicating that the native, nucleotide-occupied state of VCP does not bind to synaptotagmin. Together our findings suggest that the C2A-domains of different synaptotagmins, despite their homology, exhibit a high degree of specificity in their protein interactions. This is direct evidence for diverse roles of the various synaptotagmins in brain, consistent with their differential subcellular localizations. Furthermore, our results indicate that traditional approaches, such as affinity chromatography and immunoprecipitations, are useful tools to evaluate the overall spectrum of binding activity for a protein but are not sufficient to estimate physiological relevance. 相似文献
16.
Modulation of Ca2+-activated K+ channels of human erythrocytes by endogenous protein kinase C 总被引:1,自引:0,他引:1
Single IK(Ca) channels of human erythrocytes were studied with the patch-clamp technique to define their modulation by endogenous protein kinase C (PKC). The perfusion of the cytoplasmic side of freshly excised patches with the PKC activator, phorbol 12-myristate 13-acetate (PMA), inhibited channel activity. This effect was blocked by PKC(19-31), a peptide inhibitor specific for PKC. Similar results were obtained by perfusing the membrane patches with the structurally unrelated PKC activator 1-oleoyl-2-acetylglycerol (OAG). Blocking of this effect was induced by perfusion with PKC(19-31) or chelerythrine. Channel activity was not inhibited by the PMA analog 4alpha-phorbol 12,13-didecanoate (4alphaPDD), which has no effect on PKC. Activation of endogenous cAMP-dependent protein kinase (PKA), which is known to up-modulate IK(Ca) channels, restored channel activity previously inhibited by OAG. The application of OAG induced a reversible reduction of channel activity previously up-modulated by the activation of PKA, indicating that the effects of the two kinases are commutative, and antagonistic. Kinetic analysis showed that down-regulation by PKC mainly changes the opening frequency without significantly affecting mean channel open time and conductance. These results provide evidence that an endogenous PKC down-modulates the activity of native IK(Ca) channels of human erythrocytes. Our results show that PKA and PKC signal transduction pathways integrate their effects, determining the open probability of the IK(Ca) channels. 相似文献
17.
Machaca K 《The Journal of biological chemistry》2003,278(36):33730-33737
A rise in intracellular Ca2+ (Ca2+i) mediates various cellular functions ranging from fertilization to gene expression. A ubiquitous Ca2+ influx pathway that contributes significantly to the generation of Ca2+i signals, especially in non-excitable cells, is store-operated Ca2+ entry (SOCE). Consequently, the modulation of SOCE current affects Ca2+i dynamics and thus the ensuing cellular response. Therefore, it is important to define the mechanisms that regulate SOCE. Here we show that a rise in Ca2+i potentiates SOCE. This potentiation is mediated by Ca2+-calmodulin-dependent protein kinase II (CaMKII), because inhibition of endogenous CaMKII activity abrogates Ca2+i-mediated SOCE potentiation and expression of constitutively active CaMKII potentiates SOCE current independently of Ca2+i. Moreover, we present evidence that CaMKII potentiates SOCE by altering SOCE channel gating. The regulation of SOCE by CaMKII defines a novel modulatory mechanism of SOCE with important physiological consequences. 相似文献
18.
D Singer-Lahat E Gershon I Lotan R Hullin M Biel V Flockerzi F Hofmann N Dascal 《FEBS letters》1992,306(2-3):113-118
L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Ca2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4 beta-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (alpha 1) subunit alone were initially increased and then decreased by PMA. A similar biphasic modulation was observed when the alpha 1 subunit was expressed in combination with alpha 2/delta, beta and/or gamma subunits, and when the channels were expressed following injection of total rat heart RNA. No effects on the voltage dependence of activation were observed. The effects of PMA were blocked by staurosporine, a protein kinase inhibitor. beta subunit moderate the enhancement caused by PMA. We conclude that both enhancement and inhibition of cardiac L-type Ca2+ currents by PKC are mediated via an effect on the alpha 1 subunit, while the beta subunit may play a mild modulatory role. 相似文献
19.
The 38 kDa Ca2+/membrane-binding protein reported to be the dominant substrate of protein kinase C in the extracts of pig neutrophil granulocytes was purified partially and its phosphorylation was investigated. In pig granulocytes type II protein kinase C was the major isoform, while type III isoenzyme was present only as a minor activity. Phosphorylation of the 38 kDa protein was performed with rat brain protein kinase C. Each of the three isoenzymes purified from rat brain was able to phosphorylate this protein, though on the conditions used in our experiments it was phosphorylated most intensively by type II protein kinase C. A phospholipid-dependent, but Ca2(+)-independent, form of protein kinase C was demonstrated with the aid of a synthetic oligopeptide substrate. Phosphorylation of the 38 kDa protein by the Ca2(+)-independent enzyme proceeded exclusively in the presence of Ca2+. The Ca2+ concentration necessary for the phosphorylation of the 38 kDa by either form of protein kinase C was by orders of magnitude higher than that required for the activation of protein kinase C. 相似文献
20.
The effects of protein kinase C (PKC) activation and inhibition on the inositol 1,4,5-trisphosphate (IP3) and cytosolic Ca2+ ([Ca2+]i) responses of rat submandibular acinar cells were investigated. IP3 formation in response to acetylcholine (ACh) was not affected by the PKC activator phorbol 12-myristate 13-acetate (PMA), nor by the PKC inhibitor calphostin C (CaC). The ACh-elicited initial increase in [Ca2+]i in the absence of extracellular Ca2+ was not changed by short-term (0.5 min) exposure to PMA, but significantly reduced by long-term (30 min) exposure to PMA, and also by pre-exposure to the PKC inhibitors CaC and chelerythrine chloride (ChC). After ACh stimulation, subsequent exposure to ionomycin caused a significantly (258%) larger [Ca2+]i increase in CaC-treated cells than in control cells. However, pre-exposure to CaC for 30 min did not alter the Ca2+ release induced by ionomycin alone. These results suggest that the reduction of the initial [Ca2+]i increase is due to an inhibition of the Ca2+ release mechanism and not to store shrinkage. The thapsigargin (TG)-induced increase in [Ca2+]i was significantly reduced by short-term (0.5 min), but not by long-term (30 min) exposure to PMA, nor by pre-exposure to ChC or CaC. Subsequent exposure to ionomycin after TG resulted in a significantly (70%) larger [Ca2+]i increase in PMA-treated cells than in control cells, suggesting that activation of PKC slows down the Ca2+ efflux or passive leak seen in the presence of TG. Taken together, these results indicate that inhibition of PKC reduces the IP3-induced Ca2+ release and activation of PKC reduces the Ca2+ efflux seen after inhibition of the endoplasmic Ca2+-ATPase in submandibular acinar cells. 相似文献