首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene WSTF is deleted in the autosomal dominant hereditary disorder Williams-Beuren syndrome. This disorder is caused by a 1.3 megabase deletion in human chromosome 7, encompassing at least 17 genes. The WSTF protein contains a bromodomain, found predominantly in chromatin-associated proteins. Reported association of WSTF with chromatin remodeling factors and functional data support a role for WSTF during chromatin remodeling. Here, we report the cloning and developmental expression pattern of Xenopus laevis WSTF. Xenopus laevis WSTF is a protein with a predicted amino acid sequence of 1441 amino acids. Three discrete domains can be identified in the Xenopus laevis WSTF protein, a PHD finger, a DDT domain and a bromodomain. Alignment of Xenopus WSTF with the corresponding orthologues from Homo sapiens, Gallus gallus, Mus musculus and Danio rerio demonstrates an evolutionary conservation of WSTF amino acid sequence and domain organization. In situ hybridization reveals a dynamic expression profile during embryonic development. WSTF is expressed differentially in neural tissue, especially during neurulae stages in the eye, in neural crest cells and the brain.  相似文献   

2.
3.
Sec14 protein was first identified in Saccharomyces cerevisiae, where it serves as a phosphatidylinositol transfer protein that is essential for the transport of secretory proteins from the Golgi complex. A protein domain homologous to Sec14 was identified in several mammalian proteins that regulates Rho GTPases, including exchange factors and GTPase activating proteins. P50RhoGAP, the first identified GTPase activating protein for Rho GTPases, is composed of a Sec14-like domain and a Rho-GTPase activating protein (GAP) domain. The biological function of its Sec14-like domain is still unknown. Here we show that p50RhoGAP is present on endosomal membranes, where it colocalizes with internalized transferrin receptor. We demonstrate that the Sec14-like domain of P50RhoGAP is responsible for the endosomal targeting of the protein. We also show that overexpression of p50RhoGAP or its Sec14-like domain inhibits transferrin uptake. Furthermore, both P50RhoGAP and its Sec14-like domain show colocalization with small GTPases Rab11 and Rab5. We measured bioluminescence resonance energy transfer between p50RhoGAP and Rab11, indicating that these proteins form molecular complex in vivo on endosomal membranes. The interaction was mediated by the Sec 14-like domain of p50RhoGAP. Our results indicate that Sec14-like domain, which was previously considered as a phospholipid binding module, may have a role in the mediation of protein-protein interactions. We suggest that p50RhoGAP provides a link between Rab and Rho GTPases in the regulation of receptor-mediated endocytosis.  相似文献   

4.
The RGD1 gene, identified during sequencing of the Saccharomyces cerevisiae genome, encodes a protein with a Rho-GTPase activating protein (GAP) domain at the carboxy-terminal end. The Rgd1 protein showed two-hybrid interactions with the activated forms of Rho2p, Rho3p and Rho4p. Using in vitro assays, we demonstrated that Rgd1p stimulated the GTPase activity of both Rho3p and Rho4p; no stimulation was observed on Rho2p. In addition, the rho3Deltargd1Delta double mutant exhibited a dramatic growth defect compared to the single mutants, suggesting that Rgd1p has a GAP activity in vivo. The present study allowed the identification of the first GAP of Rho3p and Rho4p.  相似文献   

5.
6.
Rho-GTPase activating proteins (Rho-GAPs) are negative regulators of Rho-GTPase signaling pathways related to actin cytoskeleton dynamics, cell proliferation, and differentiation. We have identified a novel human gene, termed ARHGAP10, that codes for a 1957-aminoacid Rho-GAP, containing a PDZ, a PH, and a Rho-GAP domain. The cDNA is 7118 bp long and has an open reading frame of 5874 bp. A computational analysis located this gene on chromosome 10 band 10p12.32 suggesting that it is composed of 25 exons. Northern analysis revealed that it is widely expressed, with high levels in brain and muscle. Real-time quantitative PCR analysis confirmed an increase in ARHGAP10 expression during differentiation of HL-60 cells with all-trans-retinoic acid and hematopoietic stem cells with erythropoietin, suggesting that this gene could play a role in normal hematopoiesis. The fact that this gene is highly expressed in muscle and brain, which are highly differentiated tissues, further supports the hypothesis that ARHGAP10 is important for cell differentiation.  相似文献   

7.
Rho GTPase activating proteins (GAPs) stimulate the intrinsic GTP hydrolysis activity of Rho family proteins. Here we isolated a rhoGAP domain-containing protein gene with the same reading frame with ARHGAP19 gene, which has an ORF of 1485 bp encoding a putative protein of 494 amino acid residues with a predicted molecular mass of 55.806 kDa. Protein pattern analysis shows that it contains a bipartite nuclear localization signal (NLS) besides the rhoGAP domain, and it is consistent with the result of sub-cellular localization. ARHGAP19 is located in chromosome 10q24.1 and consists of 12 exons according to the Blastn result. Weak expression was detected in adult pancreas, spleen, thymus and ovary of the 16 adult tissues examined, while it had a more abundant expression pattern in eight important human fetal tissues. The expression pattern of ARHGAP19 shows it may have functions related to fetus development and gives us some clues on its probable functions in adult tissues.  相似文献   

8.
9.
10.
A gene from Xenopus laevis that is expressed specifically in the nervous system beginning at the stage of neural plate formation has been isolated and several cDNAs have been sequenced. The sequence of the predicted protein contains two copies of a presumed RNA-binding domain, each of which includes two short conserved motifs characteristic for ribonucleoproteins (RNPs), called the RNP-1 and RNP-2 consensus sequences. We name this gene Xenopus nrp-1, for nervous system-specific RNP protein-1. Sequence comparisons suggest that the nrp-1 protein is a heterogeneous nuclear RNP protein, but it is clearly distinct from previously reported hnRNP proteins such as the A1, A2/B1, and C1 proteins. nrp-1 RNA undergoes an alternative splicing event giving rise to two predicted protein isoforms that differ from each other by seven amino acids. In situ hybridization to tadpole brain shows that the nrp-1 gene is expressed in the ventricular zone where cell proliferation takes place. The occurrence of an RNP protein with nervous system-limited expression suggests that it may be involved in the tissue-specific control of RNA processing.  相似文献   

11.
12.
13.
14.
15.
A complementary DNA (cDNA) clone that encodes phosphatidylinositol 4-kinase (PI 4-kinase) was isolated from a rat brain cDNA library. The deduced amino acid sequence of 697 residues revealed that the protein contains two putative transmembrane sequences and that the N-terminal part of the protein has several sequences representing potential phosphorylation sites for cAMP- and calmodulin-dependent kinase. The C-terminal region is probably a phosphotransferase domain homologous to the kinase region of protein kinase family proteins. Specific antibody against the protein expressed in Escherichia coli successfully immunoprecipitated rat brain PI 4-kinase. The messenger RNA for PI 4-kinase was found predominantly in brain and rat neural cell lines. This PI kinase may play a specific role in neural signal transduction.  相似文献   

16.
Y Homma  Y Emori 《The EMBO journal》1995,14(2):286-291
We have cloned a novel regulator protein, p122, in the PLC-delta signalling pathway by screening a rat brain expression library with antiserum raised against purified phospholipase C-delta 1 (PLC-delta 1). This novel p122-RhoGAP binds to PLC-delta 1 and activates the phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolyzing activity of PLC-delta 1. As suggested by the deduced amino acid sequence, this regulator protein shows a similarity to the GTPase activating protein (GAP) homology region of Bcr and possesses GAP activity for RhoA, but not for Rac1; no guanine nucleotide exchange activity for RhoA and Rac1 was detected. These findings suggest that this novel RhoGAP is involved in the Rho signalling pathway, probably downstream of Rho activation, and mediates the stimulation of PLC-delta, which leads to actin-related cytoskeletal changes through the hydrolysis of PIP2, which binds to actin binding proteins such as gelsolin and profilin.  相似文献   

17.
Gab1 and Gab2 are scaffolding proteins acting downstream of cell surface receptors and interact with a variety of cytoplasmic signaling proteins such as Grb2, Shp-2, phosphatidylinositol 3-kinase, Shc, and Crk. To identify new binding partners for GAB proteins and better understand their functions, we performed a yeast two-hybrid screening with hGab2-(120-587) as bait. This work led to identification of a novel GTPase-activating protein (GAP) for Rho family GTPases. The GAP domain shows high similarity to the recently cloned CdGAP and displays activity toward RhoA, Rac1, and Cdc42 in vitro. The protein was named GC-GAP for its ability to interact with GAB proteins and its activity toward Rac and Cdc42. GC-GAP is predominantly expressed in the brain with low levels detected in other tissues. Antibodies directed against GC-GAP recognized a protein of approximately 200 kDa. Expression of GC-GAP in 293T cells led to a reduction in active Rac1 and Cdc42 levels but not RhoA. Suppression of GC-GAP expression by siRNA inhibited proliferation of C6 astroglioma cells. In addition, GC-GAP contains several classic proline-rich motifs, and it interacts with the first SH3 domain of Crk and full-length Nck in vitro. We propose that Gab1 and Gab2 in cooperation with other adapter molecules might regulate the cellular localization of GC-GAP under specific stimuli, acting to regulate precisely Rac and Cdc42 activities. Given that GC-GAP is specifically expressed in the nervous system and that it is localized to the dendritic processes of cultured neurons, GC-GAP may play a role in dendritic morphogenesis and also possibly in neural/glial cell proliferation.  相似文献   

18.
The draft genome sequence of the Western clawed frog Xenopus (Silurana) tropicalis facilitates the identification, expression analysis and phylogenetic classification of the amphibian globin gene repertoire. Frog and mammalian neuroglobin display about 67% protein sequence identity, with the expected predominant expression in frog brain and eye. Frog and mammalian cytoglobins share about 69% of their amino acids, but the frog protein lacks the mammalian-type extension at the C-terminus. Like in mammals, X. tropicalis cytoglobin is expressed in many organs including neural tissue. Neuroglobin and cytoglobin genomic regions are syntenically conserved in all vertebrate classes. Frog and fish globin X show only 57% amino acid identity, but gene synteny analysis confirms orthology. The expression pattern of X. laevis globin X differs from that in fish, with a prominent expression in the eye and weak expression in most other examined tissues. Globin X is possibly present as two paralogous copies in X. tropicalis, with one copy showing transition stages of non-functionalization. The amphibian genome contains a previously unknown globin type (tentatively named 'globin Y') which is expressed in a broad range of tissues and is distantly related to the cytoglobin lineage. The globin Y gene is linked to a cluster of larval and adult hemoglobin alpha and beta genes which contains substantially more paralogous hemoglobin gene copies than previously published. Database and gene synteny analyses confirm the absence of a myoglobin gene in X. tropicalis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号