首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects on locomotor response to cocaine challenge, acquisition of cocaine conditioned place preference and cocaine-induced dopamine (DA) release in nucleus accumbens and ventral tegmental area by the non-specific corticotropin-releasing factor (CRF) receptors antagonist alpha-helical CRF, the selective CRF receptor subtype 1 antagonist CP-154,526 and the selective CRF receptor subtype 2 antagonist anti-sauvagine-30 (AS-30) were investigated in rats. Both alpha-helical CRF (10 microg, i.c.v.) and CP-154,526 (3 microg, i.c.v.) decreased the cocaine-induced distance travelled, whereas AS-30 (3 microg, i.c.v.) did not show such an effect. The CRF receptor antagonists also have significant effects on stereotype counts induced by cocaine injection, in which the alpha-helical CRF or CP-154,526 but not AS-30 did significantly reduce the stereotype counts. alpha-Helical CRF (10 microg) prior to each injection of cocaine blocked cocaine conditioned place preference with no significant difference observed in the time spent in the drug-paired side between post- and pre-training and both 1 and 3 microg CP-154,526 also had significant inhibitory effects on cocaine-induced place preference. However, pre-treatment with an i.c.v. infusion of AS-30 (1 or 3 microg) prior to each injection of cocaine did not affect the acquisition of conditioned place preference. The alpha-helical CRF and CP-154,526 reduced extracellular DA levels of nucleus accumbens and ventral tegmental area in response to the injection of cocaine. However, both alpha-helical CRF and CP-154,526 did not modify extracellular DA levels under basal conditions. In contrast, the i.c.v. infusion of AS-30 had no effects on either the basal DA or the cocaine-induced increase in DA release in nucleus accumbens and ventral tegmental area. These findings demonstrate that activation of the CRF receptor is involved in behavioral and neurochemical effects of cocaine challenge and cocaine reward and that the role of CRF receptor subtypes 1 and 2 in cocaine-induced locomotion, reward and DA release is not identical. The CRF receptor subtype 1 is largely responsible for the action of the CRF system on cocaine locomotion and reward. These results suggest that the CRF receptor antagonist, particularly the CRF receptor subtype 1 antagonist, might be of some value in the treatment of cocaine addiction and cocaine-related behavioral disorders.  相似文献   

2.
The effects of fat content in the hypocaloric diet on whole body glucose oxidation and adipocyte glucose transport were investigated in two animal-feeding experiments. Diet-induced obese rats were food restricted to 75% of their previous energy intakes with either a high (45% by calorie) or a low (12% by calorie) corn oil diet for 9 wk (experiment 1) or 10 days (experiment 2). The losses of body weight (P < 0.05) and adipose depot weight (P < 0.05) were less in the 45% compared with the 12% fat group. During the dynamic phase of weight loss (day 10 of food restriction), plasma glucose and insulin concentrations were higher (P < 0.05) in the 45% than those in the 12% fat group. Whole body carbohydrate oxidation rate in response to an oral load of glucose was increased (P < 0.001) by food restriction in both dietary groups; however, carbohydrate oxidation rates were lower (P < 0.01) in the 45% than in the 12% fat-fed rats during the weight loss period. Adipocyte glucose transport was greater (P < 0.02) in the 45% than in the 12% fat group in an intra-abdominal adipose depot but not in subcutaneous fat. These data suggest that dietary fat content modifies whole body glucose oxidation and intra-abdominal adipocyte glucose uptake during weight loss.  相似文献   

3.
To determine if CRF receptor subtype 1 (CRF1) is involved in the acquisition phase of LH, we administered CRF receptor antagonists, CRA 1000 and CP-154,526, 60 min before (acquisition phase) or immediately after (consolidation phase) inescapable shocks on day 1, and 60 min before (retention phase) escape test on day 2. CRA1000 (10 mg/kg. p.o.) and CP-154,526 (30 mg/kg, p.o.) decreased the number of escape failures in the acquisition phase, but not in consolidation and retention phases. The tricyclic antidepressant, imipramine did not affect the number of escape failures in all 3 phases. Thus, the CRF1 receptor is apparently involved in the resultant escape failures in the acquisition phase of LH in rats.  相似文献   

4.
5.
Corticotropin-releasing factor is a neuropeptide associated with the integration of physiological and behavioural responses to stress and also in the modulation of affective state and drug reward. The selective, centrally acting corticotropin-releasing factor type 1 receptor antagonist, antalarmin, is a potent anxiolytic and reduces volitional ethanol consumption in Fawn-Hooded rats. The efficacy of antalarmin to reduce ethanol consumption increased with time, suggestive of adaptation to reinforcement processes and goal-directed behaviour. The aim of the present study was to examine the effects of chronic antalarmin treatment on reward-related regions of Fawn-Hooded rat brain. Bi-daily antalarmin treatment (20 mg/kg, i.p.) for 10 days increased tyrosine hydroxylase messenger RNA expression throughout the ventral mesencephalon. Following chronic antalarmin the density of dopaminergic terminals within the basal ganglia and amygdaloid complex were reduced, as was dopamine transporter binding within the striatum. Receptor autoradiography indicated an up-regulation of dopamine D2, but no change in D1, binding in striatum, and Golgi-Cox analysis of striatal medium spiny neurones indicated that chronic antalarmin treatment increased spine density. Thus, chronic antalarmin treatment modulates dopaminergic pathways and implies that chronic treatment with drugs of this class may ultimately alter postsynaptic signaling mechanisms within the basal ganglia.  相似文献   

6.
The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.  相似文献   

7.
Corticotropin-releasing factor (CRF) and corticotropin-releasing factor receptor (CRFR) play important roles in stress response, including anxiety and depression syndrome. The CRF expression also relates to chronic stress-related hair loss. This study utilizes the world’s largest traditional Chinese medicine (TCM) database and molecular dynamics (MD) simulations to investigate novel CRFR inhibitors for treatment of alopecia. The docking and screening from TCM database results indicate the vitamin B2, 3 beta-isodihydrocadambine, and caribine display higher binding affinity than maltose in maltose binding protein (MBP). However, the results of MD simulation shows the caribine-facilitated CRFR approach closer to MBP, the 3D structure conformation of MBP and CRFR complex forms compact structure. Interestingly, the distance between the two proteins is reducing significantly after caribine dock into MBP binding site. Beside, from Ligand channel analysis, the paths of caribine demonstrate that residence time is increased in binding pocket. Hence, our finding suggests that caribine might be a potential lead compound to stimulate MBP and CRFR interaction, and help for baldless therapy in further study.  相似文献   

8.
Serotonin is involved in many physiological processes, including the regulation of sleep and body temperature. Administration into rats of low doses (25, 50 mg/kg) of the 5-HT precursor l-5-hydroxytryptophan (5-HTP) at the beginning of the dark period of the 12:12-h light-dark cycle initially increases wakefulness. Higher doses (75, 100 mg/kg) increase nonrapid eye movement (NREM) sleep. The initial enhancement of wakefulness after low-dose 5-HTP administration may be a direct action of 5-HT in brain or due to 5-HT-induced activation of other arousal-promoting systems. One candidate arousal-promoting system is corticotropin-releasing hormone (CRH) and the hypothalamic-pituitary-adrenal axis. Serotonergic activation by 5-HTP at the beginning of the dark period also induces hypothermia. Because sleep and body temperature are influenced by circadian factors, one aim of this study was to determine responses to 5-HTP when administered at a different circadian time, the beginning of the light period. Results obtained show that all doses of 5-HTP (25-100 mg/kg) administered at light onset initially increase wakefulness; NREM sleep increases only after a long delay, during the subsequent dark period. Serotonergic activation by 5-HTP at light onset induces hypothermia, the time course of which is biphasic after higher doses (75, 100 mg/kg). Intracerebroventricular pretreatment with the CRH receptor antagonist alpha-helical CRH does not alter the impact of 5-HTP on sleep-wake behavior but potentiates the hypothermic response to 50 mg/kg 5-HTP. These data suggest that serotonergic activation by peripheral administration of 5-HTP may modulate sleep-wake behavior by mechanisms in addition to direct actions in brain and that circadian systems are important determinants of the impact of serotonergic activation on sleep and body temperature.  相似文献   

9.
Urocortin is a newly identified member of the CRF neuropeptide family. Urocortin has been found to bind with high affinity to CRF receptors. The present study investigated urocortin and CRF receptor expression in human colonic mucosa. Non-pathologic sections of adult colorectal tissues were obtained from patients with colorectal cancer at surgery. Urocortin expression was examined using immunohistochemistry and messenger (m) RNA in situ hybridization. Isolated lamina propria mononuclear cells (LPMC) and epithelial cells were also analyzed by flow cytometry for the characterization of urocortin-positive cells, and by RT-PCR for detection of urocortin, CRF, and CRF receptor mRNA. Urocortin peptide distribution at various stages of human development (n = 35, from 11 weeks of gestation to 6 years of age) was examined by immunohistochemistry using surgical and autopsy specimens. Immunoreactive urocortin and urocortin mRNA were predominantly detected in lamina propria macrophages. Urocortin peptide expression was detected from as early as three months of age, but not before birth or in neonates. Urocortin, CRF receptor type 1 and type 2 mRNA were detected in LPMC. CRF receptor type 2β mRNA, a minor isoform in human tissues, was also detected in LPMC, but at lower levels. Urocortin is locally synthesized in lamina propria macrophages and may act on lamina propria inflammatory cells as an autocrine/paracrine regulator of the mucosal immune system. The appearance of urocortin after birth indicates that the exposure to dietary intake and/or luminal bacteria after birth may contribute to the initiation of urocortin expression in human gastrointestinal tract mucosa.  相似文献   

10.
Repeated restraint stress (RRS; 3 h of restraint on 3 consecutive days) in rodents produces temporary hypophagia, but a long-term downregulation of body weight. The mild stress (MS) of an intraperitoneal injection of saline and housing in a novel room for 2 h also inhibits food intake and weight gain, but the effects are smaller than for RRS. Previous exposure to RRS exaggerates hypophagia, glucocorticoid release, and anxiety-type behavior caused by MS. Here we tested the involvement of brain stem corticotrophin-releasing factor receptors (CRFR) in mediating energetic and glucocorticoid responses to RRS or MS and in promoting stress hyperresponsiveness in RRS rats. Administration of 1.3 nmol alphahCRF(9-41), a nonspecific CRFR antagonist, exaggerated hypophagia and weight loss in both RRS and MS rats, whereas 0.26 nmol had no effect in RRS or MS rats. In contrast, 2 nmol of the nonspecific antagonist astressin had no effect on weight loss or hypersensitivity to subsequent MS in RRS rats, but blocked weight loss and inhibition of food intake caused by MS alone. MS rats infused with 3 nmol antisauvagine-30, a CRFR2 antagonist, did not lose weight in the 48 h after MS, but 0.3 nmol did not prevent weight loss in MS rats. These data suggest that inhibition of food intake and weight loss induced by RRS or by MS involve different pathways, with hindbrain CRFR mediating the effect of MS on body weight and food intake. Hindbrain CRFR do not appear to influence stress-induced corticosterone release in RRS rats.  相似文献   

11.
Moulik S  Speth RC  Rowe BP 《Life sciences》2000,66(16):PL233-PL237
In vitro receptor autoradiography was performed on rat brain and kidney sections stored frozen at -20 degrees C for extended time periods (17, 40, 64, 121, 183, 251, and 333 days). The results indicate that prolonged tissue storage has a differential effect upon 125I sar1ile8 angiotensin II binding to AT1 and AT2 receptor sites. Binding at AT1 receptor rich tissues studied (renal medulla, renal cortex, anterior pituitary, ventral hippocampus, spinal trigeminal nucleus, and nucleus of the solitary tract) shows a first order exponential decay pattern. The logarithmic linear regression slope (log(e) specific binding versus time), is significantly different from zero (p<0.05) in all AT1 rich tissues except for nucleus of the solitary tract (p=0.086). There is no detected loss of 125I sar1ile8 angiotensin II binding at the AT2 prominent regions in the superior colliculus, medial geniculate nucleus, and the inferior olivary nucleus. The half lives of AT1 receptors are highly variable, ranging from 36 days in the anterior pituitary to 442 days in the nucleus of the solitary tract, and this might be related to variable stability of AT1A and AT1B receptors. These observations should be taken into account when assessing and comparing AT1 and AT2 receptor subtype densities.  相似文献   

12.
The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observed for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.  相似文献   

13.
Gastric lesions are known to be caused by stress. Corticotropin-releasing factor (CRF) is a key peptide initiating various stress response. This study was designed to investigate how brain CRF is involved in the occurrence of stress-induced gastric erosion in rats. Intracerebroventricular (icv) administration of CRF suppressed the occurrence of gastric erosion induced by water-immersion restraint stress, and its suppressive effect was blocked by coadministration of a CRF receptor antagonist in rats. The peripheral administration of CRF had no influence on the occurrence of erosion. The icv administration of a CRF receptor antagonist or anti-rat CRF gamma-globulin increased gastric erosion induced by the stress. Ganglionic blockade with chlorisondamine, muscarinic blockade with atropine, or bilateral adrenalectomy by itself significantly inhibited the occurrence of stress-induced gastric erosion, and no additional effect of CRF on these treatments-induced inhibition of erosion was found. These results, therefore, suggest that the occurrence of stress-induced gastric erosion is mediated by the autonomic nervous system- and adrenal-dependent pathway, and that brain CRF reduces the occurrence of stress-induced gastric lesions by acting on its specific receptor within the central nervous system, probably through the autonomic nervous system- and adrenal-dependent mechanism.  相似文献   

14.
E H Lee  W R Lin 《Life sciences》1991,48(13):1333-1340
The effects of two calcium channel blockers, nifedipine and verapamil, and the peptide corticotropin releasing factor (CRF) as well as their interactive effects on memory retention were examined in rats. Male Sprague-Dawley rats were chronically cannulated bilaterally and drugs were directly injected into the dentate gyrus of the hippocampus. Animals were trained in a one-way inhibitory avoidance task and memory was measured 24 h later. Results indicate that there was a U-shaped dose-response curve for the effects of nifedipine and verapamil with nifedipine at 8 micrograms and verapamil at 1 microgram both impaired memory formation, while CRF at 0.1 microgram enhanced this process. Nifedipine at 2 micrograms and verapamil at 0.5 microgram, which did not have significant effects on memory by themselves, antagonized the memory-enhancing effect of CRF in the hippocampus. These results suggest that under normal physiological conditions, calcium influx may play an important role in memory consolidation process in the vertebrate.  相似文献   

15.
Influence of corticotropin-releasing factor fragment CRF4-6 on metabolism in the rat was investigated in this study. Tripeptide (10 mkg/rat) after intracerebroventricular infusion to anesthetized animals increased metabolic rate, not affecting the respiratory ratio, induced hyperglycemia and hyperthermia. Synchronously with that heart rate and arterial pressure did also increase. Changes in energy metabolism induced by CRF4-6 closely resemble the effect of untruncated corticotropin-releasing factor molecule. Results of this study and the range of tripeptide effects described previously evidence that CRF4-6 is a physiologically active regulatory molecule, a derivative of corticotropin-releasing factor, that expands and prolongs effects of the parent molecule.  相似文献   

16.
The ligand binding subunits of the corticotropin-releasing factor (CRF) receptors in brain and anterior pituitary of a number of species have been identified by chemical affinity cross-linking using the homobifunctional cross-linking agent disuccinimidyl suberate and 125I-Tyr0-oCRF (ovine CRF). In homogenates of rat, monkey, and human cerebral cortex, 125I-Tyr0-oCRF was covalently incorporated into a protein of Mr = 58,000. Under identical conditions in the anterior pituitary of rat, monkey, cow, and pig, 125I-Tyr0-oCRF was incorporated into a protein of apparent Mr = 75,000. The specificity of the labeling was typical of the CRF binding site since both the cerebral cortex- and pituitary-labeled proteins exhibited the appropriate pharmacological rank order profile characteristic of the CRF receptor (Nle21,Tyr32-oCRF approximately equal to rat/human CRF approximately equal to ovine CRF approximately equal to alpha-helical CRF(6-41) greater than alpha-helical oCRF(9-41) greater than or equal to oCRF(7-41) greater than rat/human CRF(1-20) approximately equal to vasoactive intestinal peptide). In addition to the major labeled proteins, 125I-Tyr0-oCRF was incorporated into higher molecular weight peptides which may represent precursors and into lower molecular weight components which may represent fragments of the major labeled proteins or altered forms of the CRF binding subunit. In summary, these data indicate a heterogeneity between brain and pituitary CRF receptors with the ligand binding subunit of the brain CRF receptor residing on a Mr = 58,000 protein, while in the anterior pituitary, the identical binding subunit resides on a protein of apparent Mr = 75,000.  相似文献   

17.
Metabolic adjustments occur with weight loss that may contribute to a high rate of weight regain. We have previously observed in obesity-prone, obese rats that weight reduction is accompanied by a suppression in resting metabolic rate beyond what would be predicted for the change in metabolic mass. In the present study, we examine if this adjustment in metabolic efficiency is affected by the length of time in weight maintenance and if it contributes to the propensity to regain after weight loss. Twenty-four-hour, nonresting, and resting energy expenditure (REE) were obtained by indirect calorimetry and normalized to metabolic mass estimated by dual-energy X-ray absorptiometry. A 10% loss in body weight in weight-reduced rats was accompanied by a 15% suppression in adjusted REE. This enhancement in metabolic efficiency was not altered with either 8 or 16 wk of weight maintenance, but it did resolve when the forced control of intake was removed and the weight was regained. The rate of weight regain increased with the time in weight maintenance and was exceptionally high early during the relapse period. During this high rate of weight gain, the suppression in REE persists while consumption increases to a level that is higher than when they were obese. In summary, an enhanced metabolic efficiency and an elevated appetite both contribute (60% and 40%, respectively) to a large potential energy imbalance that, when the forcible control of energy intake is relieved, becomes actualized and results in an exceptionally high rate of weight regain.  相似文献   

18.
Corticotropin-releasing factor-containing cells have been recently found in the endocrine pancreas of several vertebrate species by immunocytochemistry. In order to clarify the possible physiological significance of these findings, we have studied the effect of the administration of CRF on endocrine pancreatic function. Five minutes, after injection of ovine CRF 1-41 into the jugular vein, a dose-related increase in insulin levels in the hepatic-portal vein of anesthetized rats was found. This dose-dependent insulin increase was delayed to fifteen minutes after CRF injection into rats exposed to greater surgical stress and was partially blunted in adrenalectomized animals. Glucose and glucagon levels were not altered after CRF administration under these conditions. These results suggest that CRF may play a modulatory role in insulin secretion; however, whether CRF acts directly on the beta-cell or through some CRF-stimulated mediator remains to be established.  相似文献   

19.
The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neuro-intermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR.  相似文献   

20.
Roux-en-Y gastric bypass (RYGB) is the most effective therapy for morbid obesity, but it has a approximately 20% failure rate. To test our hypothesis that outcome depends on differential modifications of several energy-related systems, we used our established RYGB model in Sprague-Dawley diet-induced obese (DIO) rats to determine mechanisms contributing to successful (RGYB-S) or failed (RYGB-F) RYGB. DIO rats were randomized to RYGB, sham-operated Obese, and sham-operated obese pair-fed linked to RYGB (PF) groups. Body weight (BW), caloric intake (CI), and fecal output (FO) were recorded daily for 90 days, food efficiency (FE) was calculated, and morphological changes were determined. d-Xylose and fat absorption were studied. Glucose-stimulated vagal efferent nerve firing rates of stomach were recorded. Gut, adipose, and thyroid hormones were measured in plasma. Mitochondrial respiratory complexes in skeletal muscle and expression of energy-related hypothalamic and fat peptides, receptors, and enzymes were quantified. A 25% failure rate occurred. RYGB-S, RYGB-F, and PF rats showed rapid BW decrease vs. Obese rats, followed by sustained BW loss in RYGB-S rats. RYGB-F and PF rats gradually increased BW. BW loss in RYGB-S rats is achieved not only by RYGB-induced decreased CI and increased FO, but also via sympathetic nervous system activation, driven by increased peptide YY, CRF, and orexin signaling, decreasing FE and energy storage, demonstrated by reduced fat mass associated with the upregulation of mitochondrial uncoupling protein-2 in fat. These events override the compensatory response to the drop in leptin levels aimed at conserving energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号