首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 855 毫秒
1.
L-Canavanine, a natural L-arginine analog, is known to possess cytotoxicity to tumor cells in culture and experimental tumors in vivo. In this study, we first show that apoptotic cell death is associated with antitumor activity of L-canavanine against human acute leukemia Jurkat T cells. When Jurkat T cells were treated with 1.25-5.0mM L-canavanine for 36 h, apoptotic cell death accompanying several biochemical events such as caspase-3 activation, degradation of poly(ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation was induced in a dose-dependent manner; however, cytochrome c release from mitochondria was not detected. Under these conditions, the expression of Bcl-2 and its functional homolog Bcl-xL was markedly upregulated. The L-canavanine-induced caspase-3 activation, degradation of PARP, and apoptotic DNA fragmentation were suppressed by ectopic expression of Bcl-2 or Bcl-xL, both of which are known to play roles as anti-apoptotic regulators. These results demonstrate that the cytotoxic effect of L-canavanine on Jurkat T cells is attributable to the induced apoptosis and that L-canavanine-induced apoptosis is mediated by a cytochrome c-independent caspase-3 activation pathway that can be interrupted by Bcl-2 or Bcl-xL.  相似文献   

2.
N-(2-(1H-indazol-3-yl)-1H-pyrrolo[3,2-b]pyridin-5-yl)-4-chloro-N-methylbenzamide (SMT-A07) is a novel 3-(Indol-2-yl) indazole derivative. The anticancer activities in vitro and the cell apoptosis-induction abilities of SMT-A07 on human leukemia HL60 and NB4 cell lines were investigated in this study. The results of MTT assay showed SMT-A07 was a potential and highly efficient antitumor compound with IC50 values ranging from 0.09 to 1.19 μM in five leukemia cell lines. SMT-A07 treatment for 24 h caused the increment of apoptosis rate from 6.88 to 49.72% in HL60 cells and from 8.72 to 56.28% in NB4 cells by flow cytometry analysis. Agarose gel electrophoresis showed DNA fragmentation that appeared after cells were exposed to SMT-A07. After SMT-A07 incubation, DAPI staining revealed the presence of DNA fragmentation, and perinuclear apoptotic body. SMT-A07 also resulted in a loss of ΔΨm in both HL60 and NB4 cells by JC-1 staining. Moreover, apoptosis-related proteins were examined by western blotting to explore the mechanism of its cytotoxicity. SMT-A07 exposure caused down-regulation and cleavage of procaspase-8, procaspase-3, Bid, PARP and up-regulation of cleaved caspase-8, cleaved caspase-3, PARP (Cleaved Fragment). In addition, the presence of pan-caspase inhibitor BOC-D-FMK prevented cells from caspase-3 activation, PARP cleavage, and subsequent apoptosis. Our study demonstrates that SMT-A07 displays an apparent antitumor activity with extensive anti-leukemia spectrum, and SMT-A07 can induce the apoptosis of HL60 and NB4 cells activation of the caspase cascade, which deserves further development.  相似文献   

3.
It has been shown that Fructus Ligustri Lucidi (FLL), a promising traditional Chinese medicine, can inhibit the growth of tumors. However, the effective component and molecular mechanism of FLL act to inhibit tumor proliferation are unclear. In this study, we demonstrated that oleanolic acid (OA), a principal chemical component of FLL, inhibited the proliferation of human leukemia HL60 cells in culture. MTT assay showed that treatment of HL60 cells with FLL crude extracts or OA dramatically blocked the growth of target tumor cell in a time- and dose-dependent manner. Morphological changes of the nuclei and DNA fragmentation showed that apoptotic cell death occurred in the HL60 cells after treating with FLL extracts (20 mg/ml) or OA (3.65×10^-2 mg/ml). Furthermore, flow cytometry assay showed that treatment of HL60 cells with FLL or OA caused an increased accumulation of G1 and sub-G1 subpopulations. Western blot analysis showed that caspase-9 and caspase-3 were activated, accompanied by the cleavage of poly (ADP-ribose) polymerase (PARP) in the target cells during FLL- or OA-induced apoptosis, These results suggest that OA acts as the effective component of FLL by exerting its cytotoxicity towards target tumor cells through activation of caspases and cleavage of PARP.  相似文献   

4.
A cytotoxic lectin (Viscum album L. coloratum agglutinin, VCA) from Korean mistletoe was isolated by affinity chromatography on Sepharose 4B immobilized with asialofetuin. In HL-60 cells, addition of VCA resulted in a dose- and time-dependent growth suppression, morphological changes of apoptotic nuclei, and DNA fragmentation characteristics of apoptosis. To investigate how caspase-3 activation during VCA-induced apoptosis induces cleavages of PARP, the expression of PARP and the pattern of caspase-3 activation in HL-60 cells were investigated. The native and processed PARP forms typically seen in apoptotic cells were observed, and a decrease in expression of the 32-kDa form of caspase-3 in a dose-dependent manner was observed. The VCA-induced apoptosis was significantly inhibited by a caspase-3 specific inhibitor, z-DEVD-FMK, and the PARP processing and caspase-3 activation were also inhibited by the inhibitor. A possible involvement of cell cycle arrest in VCA-induced apoptosis was investigated by flow cytometry and the results suggested that the apoptotic effect of VCA is not involved in the induction of cell cycle arrest.  相似文献   

5.
ω-Hydroxyundec-9-enoic acid (ω-HUA), a hydroxyl unsaturated fatty acid derivative, is involved in the antifungal activity of wild rice (Oryza officinalis). Here, we investigated the anti-cancer activity of ω-HUA on a non-small cell lung cancer (NSCLC) cell line. ω-HUA increased apoptosis and induced cleavages of caspase-6, caspase-9, and poly (ADP-ribose) polymerase (PARP). ω-HUA treatment significantly induced endoplasmic reticulum (ER) stress response. Suppression of CHOP expression and inhibiting ER stress by 4-phenylbutyrate (4-PBA) significantly attenuated the ω-HUA treatment-induced activation of caspase-6, caspase-9, and PARP, and subsequent apoptotic cell death, indicating a role for ER stress in ω-HUA-induced apoptosis. In addition, cells subjected to ω-HUA exhibited significantly increased quantity of reactive oxygen species (ROS), and the ROS scavenger N-acetyl-l-cysteine (NAC) inhibited ω-HUA-induced apoptotic cell death and ER stress signals, indicating a role for ROS in ER stress-mediated apoptosis in ω-HUA-treated cells. Taken together, these results suggest that sequential ROS generation and ER stress activation are critical in ω-HUA treatment-induced apoptosis and that ω-HUA represents a promising candidate for NSCLC treatment.  相似文献   

6.
7.
A 16-amino-acid peptide was isolated from the leaves of sweet potato. The peptide caused a rapid alkalinization response in tomato suspension culture media, a characteristic of defense peptides in plants. No post-translational modification was observed on the peptide according to MALDI-MS analysis. We have named the peptide Ipomoea batatas anti-cancer peptide (IbACP). IbACP also was shown with the ability to dose-dependently inhibit Panc-1, a pancreatic cancer line, cell proliferation. The morphological observations of the Panc-1 cells by phase contrast microscopy showed significant changes after treatment with IbACP. Moreover, caspase-3 and PARP [poly(ADP-ribose) polymerase] were activated by IbACP treatment, followed by cell death. An increase in the levels of cleaved caspase-3 and -9 was also detected by an immunoblot assay after treatment with IbACP. In addition, genomic DNA fragmentation and decreased cellular proliferation were induced when IbACP was supplied to the Panc-1 cells, further demonstrating its biological relevance. The combined data indicates that IbACP peptide may have an important role in the regulation of cellular proliferation by inducing and promoting apoptosis through the mitochondrial apoptotic pathway. This report also showed that IbACP peptide contains potent anti-cancer effects and may play an important role in herbal medicine development.  相似文献   

8.
Ju EM  Lee SE  Hwang HJ  Kim JH 《Life sciences》2004,74(8):1013-1026
The antioxidant and anticancer properties of a medicinal plant, Betula platyphylla var. japonica were investigated. The total methanol extract of B. platyphylla var. japonica had protective effects against hydrogen peroxide (H2O2) in the Chinese hamster lung fibroblast (V79-4) cell line and induced apoptotic cell death in human promyelocytic leukemia (HL-60) cells, a cancer cell line. B. platyphylla var. japonica extract significantly increased cell viability against H2O2. The extract also showed high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (IC50 2.4 microg/ml) and lipid peroxidation inhibitory activity (IC50 below 4.0 microg/ml). Furthermore, B. platyphylla var. japonica extract reduced the number of V79-4 cells arrested in G2/M in response to H2O2 treatment and increased the activities of several cellular antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase. Treatment with B. platyphylla var. japonica extract induced cytotoxicity and apoptosis in HL-60 cells, as shown by nucleosomal DNA fragmentation, increases in the subdiploid cell population, and fluorescence microscopy. B. platyphylla var. japonica extract gradually increased the expression of pro-apoptotic Bax and led to the activation of caspase-3 and cleavage of PARP. These findings suggest that B. platyphylla var. japonica exhibits potential antioxidant and anticancer properties.  相似文献   

9.
Alveolar macrophages (AMs) are the principal target cells of silica and occupy a key position in the pathogenesis of silica-related diseases. Silica has been found to induce apoptosis in AMs, whereas its underlying mechanisms involving the initiation and execution of apoptosis are largely unknown. The main objective of the present study was to examine the form of cell death caused by silica and the mechanisms involved. Silica-induced apoptosis in AMs was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and cell cycle/DNA content analysis. The elevated level of reactive oxygen species (ROS), caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in silica-treated AMs were also determined. The results showed that there was a temporal pattern of apoptotic events in silica-treated AMs, starting with ROS formation and followed by caspase-9 and caspase-3 activation, PARP cleavage, and DNA fragmentation. Silica-induced apoptosis was significantly attenuated by a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp aldehyde, and ebselen, a potent antioxidant. These findings suggest that apoptosis is an important form of cell death caused by silica exposure in which the elevated ROS level that results from silica exposure may act as an initiator, leading to caspase activation and PARP cleavage to execute the apoptotic process.  相似文献   

10.
Various polyunsaturated fatty acids, especially gamma-linolenic acid (GLA), inhibit the growth of a variety of tumor cells. Some evidence indicates that polyunsaturated fatty acid can kill cells by apoptosis. In the current study, we tested the apoptotic effect of GLA on human chronic myelogenous leukemia K562 cells. GLA induced K562 cell death in a dose-dependent manner. Typical apoptotic nuclei were shown by staining of K562 cells with DNA-binding fluorochrome Hoechst 33342, characterized by chromatin condensation and nuclear fragmentation. Flow cytometric analysis also demonstrated that GLA caused dose-dependent apoptosis of K562 cells. The apoptosis could be inhibited by a pancaspase inhibitor (z-VAD-fmk), suggesting the involvement of caspases. Further, release of cytochrome c, activation of caspase-3 and cleavage of PARP were found in GLA-induced apoptosis. GLA treatment could also elevate lipid peroxidation in K562 cells, and antioxidant α-tocopherol could reverse the cytotoxicity of GLA. The saturated fatty acid SA, which did not exhibit significant increase in lipid peroxidation, also did not induce cytotoxicity. Intracellular GSH was also determined, and there was no marked change of GSH levels in cells after incubation with GLA compared with the control. These results demonstrate that GLA could induce apoptosis in K562 cells. Apoptosis is mediated by release of cytochrome c, activation of caspase-3. Lipid peroxidation may play a role in GLA cytotoxicity.  相似文献   

11.
Kwon MJ  Nam TJ 《Life sciences》2006,79(20):1956-1962
Porphyrans, the sulfated polysaccharides, are the main components of Porphyra. The potential apoptotic activities of porphyran were evaluated using AGS human gastric cancer cells. Porphyran did not affect the growth of normal cells, but did induce cancer cell death in a dose-dependent manner. The addition of 0.1% porphyran also reduced DNA synthesis after 24 h of exposure, suggesting that porphyran inhibits cancer cell growth by both decreasing cell proliferation and inducing apoptosis. AGS cells treated with porphyran displayed a marked increase in poly(ADP-ribose) polymerase (PARP) cleavage, as well as caspase-3 activation. The ability of porphyran to promote apoptosis may contribute to its usefulness as an agent capable of significantly inhibiting cell growth in AGS human gastric cancer cells. Insulin-like growth factor-I receptor (IGF-IR) phosphorylation was decreased in porphyran-treated AGS cells compared to control cells, which correlated with Akt activation. Thus, porphyran appears to negatively regulate IGF-IR phosphorylation by causing a decrease in the expression levels in AGS gastric cancer cells, and then inducing caspase-3 activation.  相似文献   

12.
We provide evidence that Salmonella typhimurium kills phagocytes by an unusual proinflammatory mechanism of necrosis that is distinguishable from apoptosis. Infection stimulated a distinctly diffuse pattern of DNA fragmentation in macrophages, which contrasted with the marked nuclear condensation displayed by control cells undergoing chemically induced apoptosis. In apoptotic cells, DNA fragmentation and nuclear condensation result from caspase-3-mediated proteolysis; caspases also subvert necrotic cell death by cleaving and inactivating poly ADP-ribose polymerase (PARP). Caspase-3 was not activated during Salmonella infection, and PARP remained in its active, uncleaved state. Another hallmark of apoptosis is sustained membrane integrity during cell death; yet, infected macrophages rapidly lost membrane integrity, as indicated by simultaneous exposure of phosphatidylserine with the uptake of vital dye and the release of the cytoplasmic enzyme lactate dehydrogenase. During experimentally induced necrosis, lethal ion fluxes through the plasma membrane can be prevented by exogenous glycine; similarly, glycine completely blocked Salmonella-induced cytotoxicity. Finally, inhibition of the interleukin (IL)-1-converting enzyme caspase-1 blocked the death of infected macrophages, but not control cells induced to undergo apoptosis or necrosis. Thus, Salmonella-infected macrophages are killed by an unusual caspase-1-dependent mechanism of necrosis.  相似文献   

13.
Venom from the sea anemone, Heteractis magnifica, has multiple biological effects including, cytotoxic, cytolytic and hemolytic activities. In this study, cytotoxicity induced by H. magnifica venom was investigated using the crystal violet assay on human breast cancer T47D and MCF7 cell lines and normal human breast 184B5 cell line. Apoptosis was also assayed via Annexin V-flourescein isothiocyanate and propidium iodide (PI) staining followed by flow cytometric analysis. Cell cycle progression and mitochondria membrane potential were studied via flow cytometry following PI and JC-1 staining respectively. H. magnifica venom induced significant reductions in viable cell numbers and increases in apoptosis in T47D and MCF7 in dose-dependent manners. A significant apoptosis-related increase in the sub G1 peak of the cell cycle in both breast cancer cell lines was also observed. Moreover, treatment by venom cleaved caspase-8, caspase-9, and activated caspase-3. Overall, H. magnifica venom was highly cytotoxic to T47D and MCF7 human breast cancer cells, and the phenomenon could be the killing phenomenon via the death receptor-mediated and the mitochondria-mediated apoptotic pathways. Consequently, H. magnifica venom has potential for the development of a breast cancer therapeutic.  相似文献   

14.
The ability of Coxiella burnetii to modulate host cell death may be a critical factor in disease development. In this study, human monocytic THP-1 cells were used to examine the ability of C. burnetii Nine Mile phase II (NMII) to modulate apoptotic signaling. Typical apoptotic cell morphological changes and DNA fragmentation were detected in NMII infected cells at an early stage of infection. FACS analysis using Annexin-V-PI double staining showed the induction of a significant number of apoptotic cells at an early stage of NMII infection. Double staining of apoptotic cell DNA and intracellular C. burnetii indicates that NMII infected cells undergoing apoptosis. Interestingly, caspase-3 was not cleaved in NMII infected cells and the caspase-inhibitor Z-VAD-fmk did not prevent NMII induced apoptosis. Surprisingly, the caspase-3 downstream substrate PARP was cleaved in NMII infected cells. These results suggest that NMII induces apoptosis during an early stage of infection through a caspase-independent pathway in THP-1 cells. In addition, NMII-infected monocytes were unable to prevent exogenous staurosporine-induced apoptotic death. Western blot analysis indicated that NMII infection induced the translocation of AIF from mitochondria into the nucleus. Cytochrome c release and cytosol-to-mitochondrial translocation of the pore-forming protein Bax in NMII infected cells occurred at 24 h post infection. These data suggest that NMII infection induced caspase-independent apoptosis through a mechanism involving cytochrome c release, cytosol-to-mitochondrial translocation of Bax and nuclear translocation of AIF in THP-1 monocytes. Furthermore, NMII infection increased TNF-α production and neutralization of TNF-α in NMII infected cells partially blocked PARP cleavage, suggesting TNF-α may play a role in the upstream signaling involved in NMII induced apoptosis. Antibiotic inhibition of C. burnetii RNA synthesis blocked NMII infection-induced PARP activation. These results suggest that both intracellular C. burnetii replication and secreted TNF-α contribute to NMII infection-triggered apoptosis during an early stage of infection.  相似文献   

15.
BackgroundDespite advances in treatment, ovarian cancer is the most lethal gynecologic malignancy. Therefore significant efforts are being made to develop novel strategies for the treatment of ovarian cancer. Salinomycin has been shown to be highly effective in the elimination of cancer stem cells both in vitro and in vivo. The present study focused on investigating important cell signaling molecules such as Akt and NF-κB during salinomycin-induced apoptosis in cisplatin resistant ovarian cancer cells (A2780cis).MethodsMTT assay was performed to determine cell viability. Flow cytometry and DNA fragmentation assay were performed to analyze the effect on cell cycle and apoptosis. The expression of apoptosis related proteins was evaluated by Western blot analysis.ResultsThe cell viability was significantly reduced by salinomycin treatment in a dose dependent manner. The flow cytometry result showed an increase in sub-G1 phase. Salinomycin inhibited the nuclear transportation of NF-κB, and downregulated Akt expression. Declined Bcl-2, activation of caspase-3 and increased PARP cleavage triggered apoptosis. Moreover, DNA fragmentation assay also revealed apoptotic induction.ConclusionThe result suggested that salinomycin-induced apoptosis in A2780cis was associated with inhibition of Akt/NF-κB. It may become a potential chemotherapeutic agent for the cisplatin resistant ovarian cancer therapy.  相似文献   

16.
AIMS: To study the potential apoptosis effects of cytotoxic marine bacterial metabolites on human HeLa cell line. METHODS AND RESULTS: After HeLa cells were routinely cultured, tetrazolium-based colorimetric assay for cytotoxicity was performed to screen the marine bacteria extracts showing 12 strains active. To find the potential active strain with apoptosis mechanism, a battery of apoptosis assays, including AO/EB staining, TUNEL assay (terminal-deoxynucleotidyl transferase mediated nick end labelling), gel electrophoresis and flow cytometry, were used to determine whether apoptosis was involved in HeLa cell cytotoxicity of marine bacterial extracts. The results indicated that four strains could induce cell shrinkage, cell membrane blebbing, formation of apoptotic body and DNA fragmentation. CONCLUSIONS: Crude extracts of 12 of 153 strains of marine bacteria showed cytotoxic effects with ID50 ranged from 77.20 to 199.84 microg ml(-1), in which eight strains of bacteria were associated bacteria. The metabolites in the strains of QD1-2, NJ6-3-1, NJ1-1-1 and SS6-4 were able to induce HeLa cells apoptosis. Furthermore, the assessment by flow cytometry indicated that the hypodiploid apoptotic cells increased in a time-dependent manner, suggesting that induced apoptosis occurred from 24 h to 48 h after the extracts treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggested that the compounds from fermentation in these four marine bacterial strains could be candidates for developing apoptosis specific anti-tumour agents with lower toxicity. This study indicated that associated marine bacteria could be good source to find cytotoxic metabolites, and some cytotoxic marine bacterial metabolites could have apoptosis mechanisms.  相似文献   

17.
Tetrazolium violet (TV), a tetrazolium salt, has been applied in several fields, including estimating respiration rate, as a redox indicator of microbial growth, and for estimating the number of viable animal cells. It has recently been found that TV is capable of inducing apoptosis in rat glioblastoma cells by way of an elusive mechanism. In this study, we demonstrated that TV also induced apoptosis in mouse breast tumor C127 cells as evidenced by nucleus condensation and nucleus fragmentation. Our data showed that TV caused activation of caspase-3 and caspase-8, but not caspase-9. An enhancement in Fas and its two ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), might be responsible for the apoptotic effect induced by TV. Also, the results first reported that TV not only inhibited C127 cells proliferation but also blocked cell cycle progression in the G1 and G2 phase, determined by MTT assay and flow cytometry analysis. Immunofluorescence assay demonstrated that TV significantly increased the expression of p53 protein, which caused cell cycle arrest. Taken together, p53, Fas/FasL, and the caspase apoptotic system may participate in the antiproliferative activity of TV in C127 cells.  相似文献   

18.
Apoptosis, a programmed cell death, is an important control mechanism of cell homeostasis. Deficiency in apoptosis is one of the key features of cancer cells, allowing cells to escape from death. Activation of apoptotic signaling pathway has been a target of anti-cancer drugs in an induction of cytotoxicity. PQ1, 6-methoxy-8-[(3-aminopropyl)amino]-4-methyl-5-(3-trifluoromethylphenyloxy)quinoline, has been reported to decrease the viability of cancer cells and attenuate xenograft tumor growth. However, the mechanism of the anti-cancer effect is still unclear. To evaluate whether the cytotoxicity of PQ1 is related to induction of apoptosis, the effect of PQ1 on apoptotic pathways was investigated in T47D breast cancer cells. PQ1-treated cells had an elevation of cleaved caspase-3 compared to controls. Studies of intrinsic apoptotic pathway showed that PQ1 can activate the intrinsic checkpoint protein caspase-9, enhance the level of pro-apoptotic protein Bax, and release cytochrome c from mitochondria to cytosol; however, PQ1 has no effect on the level of anti-apoptotic protein Bcl-2. Further studies also demonstrated that PQ1 can activate the key extrinsic player, caspase-8. Pre-treatment of T47D cells with caspase-8 or caspase-9 inhibitor suppressed the cell death induced by PQ1, while pre-treatment with caspase-3 inhibitor completely counteracted the effect of PQ1 on cell viability. This report provides evidence that PQ1 induces cytotoxicity via activation of both caspase-8 and caspase-9 in T47D breast cancer cells.  相似文献   

19.
Wang JH  Zhou YJ  Bai X  He P 《Molecules and cells》2011,32(5):451-457
Jolkinolide B, a bioactive diterpene isolated from the roots of Euphorbia fischeriana Steud, is known to induce apoptosis in cancer cells. However, the molecular mechanism of its anti-cancer activity has not been fully elucidated. In the present study, we found that Jolkinolide B reduced cell viability and induced apoptosis in a dose- and timedependent manner in human leukemic U937. The induction of apoptosis was also accompanied by the downregulation of PI3K/Akt and the inhibitor of apoptosis protein (IAP) family proteins. Moreover, we observed that Jolkinolide B treatment resulted in activation of caspase-3 and -9, which may partly explain the anti-cancer activity of Jolkinolide B. Taken together, our study for the first time suggest that Jolkinolide B is able to enhance apoptosis of U937 cells, at least in part, through downregulation of PI3K/Akt and IAP family proteins. Moreover, triggering of caspase-3 and -9 activation mediated apoptotic induction.  相似文献   

20.
《Phytomedicine》2015,22(9):796-806
BackgroundGastric cancer is the second leading cause of cancer related deaths after lung cancer globally. Among natural products, natural triterpenes represent a structurally diverse group of organic compounds with potent antitumor activity.PurposeThe objective of the present research work demonstrated the antiproliferative and apoptotic activity of rosamultic acid, a natural triterpenoid, in human gastric cancer (SGC-7901) cells. Its effect on cellular morphology, cell cycle arrest, DNA fragmentation and expression levels of caspase-3, caspase-8 and caspase-9 were also determined.MethodsAntiproliferative activity of rosamultic acid was evaluated by MTT assay. Phase contrast, fluorescence microscopy as well as flow cytometry using Hoechst 33342, acridine orange/ethidium bromide and Annexin V-FITC as cellular probes were used to evaluate the induction of apoptosis by rosamultic acid. Protein level expressions were analyzed by western blot analysis.ResultsThe results revealed that rosamultic acid induced dose-dependent as well as time dependent cytotoxic effects in SGC-7901 gastric cancer cells. It also led to a reduction in clonogenic activity along with inhibiting the cell migration. Characteristic features of apoptosis induced by rosamultic acid were observed and quantified. Cell cycle arrest at sub-G1 phase was induced by rosamultic acid along with downregulation of expression levels of CDK4, CDK6 and cyclin D1. Rosamultic acid also significantly led to the activation of caspase-3, -8 and -9 during the 48 h treatment along with cleaving PARP in a dose-dependent manner. DNA fragmentation following rosamultic acid treatment was also observed in these cells.ConclusionThe current study strongly reveals that rosamultic acid inhibits gastric cancer proliferation by inducing apoptosis mediated through cell cycle arrest, downregulation of cell cycle related protein expressions, inhibition of cell migration, DNA damage, and activation of caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号