首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rare earth gadolinium forms a binary enzyme-metal complex with muscle pyruvate kinase which enhances the water proton relaxation rate (?b = 12 ± 2). Analysis of a Scatchard plot of the binding data indicates 3.7 ± 0.5 gadolinium binding sites with Kd = 26 ± 10 μM per protein of 237,000 daltons. The transition metal ion, manganese, is displaced from the enzyme by the rare earths, gadolinium, neodymium, thulium, and lanthanum as well as the alkaline earths, magnesium and calcium suggesting all of these metal ions bind to the same site on the protein. Upon addition of ATP to a solution of gadolinium and enzyme a decrease in enhancement is observed which is consistent with the formation of a metal bridge complex. Because of the low dissociation constant for the Gd-ATP complex (0.1 μm) it is possible to directly measure the dissociation of the Gd-ATP complex from the ternary enzyme-Gd-ATP complex, K2 = 13 μM ± 4 μM. However, a ternary complex of phospho-enolpyruvate-Gd-enzyme is not detected by water proton relaxation rate enhancement measurements which leads to speculation that the ionic radius of gadolinium (0.94 Å) is so large that it results in a distortion of the phosphoenolypyruvate binding site on pyruvate kinase thus preventing phosphoenolpyruvate binding.  相似文献   

2.
Potato tuber phosphofructokinase was purified 19·.6-fold by a combination of ethanol fractionation and DEAE-cellulose column chromatography. The enzyme was very unstable; its pH optimum was 8·0. Km for fructose-6-phosphate, ATP and Mg2+ was 2·1 × 10?4 M, 4·5 × 10?5 M and 4·0 × 10?4 M respectively. ITP, GTP, UTP and CTP can act as phosphate donors, but are less active than ATP. Inhibition of enzyme activity by high levels of ATP was reversed by increasing the concentration of fructose-6-phosphate; the affinity of enzyme for fructose-6-phosphate decreased with increasing concentration of ATP. 5′-AMP, 3′,5′-AMP, 3′-AMP, deoxy AMP, UMP, IMP, CMP, GMP, ADP, CDP, GDP and UDP did not reverse the inhibition of enzyme by ATP. ADP, phosphoenolpyruvate and citrate inhibited phosphofructokinase activity but Pi did not affect it. Phosphofructokinase was not reactivated reversibly by mild change of pH and addition of effectors.  相似文献   

3.
Magnesium-dependent adenosine triphosphatase, purified from sheep kidney medulla using digitonin, has been characterized in a series of kinetic and magnetic resonance studies. Kinetic studies of divalent metal activation using either Mg2+ or Mn2+ indicate a biphasic response to divalent cations. Apparent Km values of 23 μm for free Mg2+ and 3.3 μm for free Mn2+ are obtained at low levels of added metal, while Km values of 0.50 mm for free Mg2+ and 0.43 mm for free Mn2+ are obtained at much higher levels of divalent cations. In all cases the kinetic data indicate that the binding of divalent metals is independent of the substrate, ATP. Kinetic studies of the substrate requirements of the Mg2+-ATPase also yield biphasic Lineweaver-Burk plots. At low ATP concentrations, kinetic studies yield apparent Km values for free ATP of 6.0 and 1.4 μm with Mg2+ and Mn2+, respectively, as the activating divalent metals. At much higher levels of ATP the response of the enzyme to ATP changes so that Km values for free ATP of 8.0 and 2.0 mm are obtained for Mg2+ and Mn2+, respectively. In both cases, however, the binding of ATP is independent of added metal. ADP inhibits the Mg2+-ATPase and the kinetic data indicate that ADP competes with ATP at both the high and low affinity sites. Dixon plots of the data are consistent with competitive inhibition at both ATP sites, with Ki values of 10.5 μm and 4.5 mm. Electron paramagnetic resonance and water proton relaxation rate studies show that the enzyme binds 1 g ion of Mn2+ per 469,000 g of protein. The Mn2+ binding studies yield a KD for Mn2+ at the single high affinity site of 2 μm, in good agreement with the kinetically determined activator constant for Mn2+ at low Mn2+ levels. Moreover, the EPR binding studies also indicate the existence of 34 weak sites for Mn2+ per single high affinity Mn2+ site. The KD for Mn2+ at these sites is 0.55 mm, in good agreement with the kinetic activator constant for Mn2+ of 0.43 mm, consistent with additional activation of the enzyme by the large number of weaker metal binding sites. The enhancement of water proton relaxation by Mn2+ in the presence of the enzyme is also consistent with the tight binding of a single Mn2+ ion per 469,000 Mr protein and the weaker binding of a large number of divalent metal ions. Analysis of the data yields a value for the enhancement for bound Mn2+ at the single tight site, ?b, of 5 and an enhancement at the 34 weak sites of 11. The frequency dependence of water proton relaxation by Mn2+ at the single tight site yields a dipolar correlation time (constant from 8–60 MHz) of 3.18 × 10?9 s. The kinetics and metal binding studies, together with the effect of temperature on ATPase activity at high and low levels of ATP, are consistent with the existence in this preparation of a single Mg2+-ATPase, with high and low affinity sites for divalent metals and for ATP. Observations of both high and low affinities for ATP have been made with two other purified ATPases. The similarities of these systems to the Mg2+-ATPase described here are discussed.  相似文献   

4.
PII signaling proteins comprise one of the most versatile signaling devices in nature and have a highly conserved structure. In cyanobacteria, PipX and N-acetyl-l-glutamate kinase are receptors of PII signaling, and these interactions are modulated by ADP, ATP, and 2-oxoglutarate. These effector molecules bind interdependently to three anti-cooperative binding sites on the trimeric PII protein and thereby affect its structure. Here we used the PII protein from Synechococcus elongatus PCC 7942 to reveal the structural basis of anti-cooperative ADP binding. Furthermore, we clarified the mutual influence of PII-receptor interaction and sensing of the ATP/ADP ratio. The crystal structures of two forms of trimeric PII, one with one ADP bound and the other with all three ADP-binding sites occupied, revealed significant differences in the ADP binding mode: at one site (S1) ADP is tightly bound through side-chain and main-chain interactions, whereas at the other two sites (S2 and S3) the ADP molecules are only bound by main-chain interactions. In the presence of the PII-receptor PipX, the affinity of ADP to the first binding site S1 strongly increases, whereas the affinity for ATP decreases due to PipX favoring the S1 conformation of PII-ADP. In consequence, the PII-PipX interaction is highly sensitive to subtle fluctuations in the ATP/ADP ratio. By contrast, the PII-N-acetyl-l-glutamate kinase interaction, which is negatively affected by ADP, is insensitive to these fluctuations. Modulation of the metabolite-sensing properties of PII by its receptors allows PII to differentially perceive signals in a target-specific manner and to perform multitasking signal transduction.  相似文献   

5.
The behavior of mammalian phosphofructokinase on immobilized adenine nucleotides was investigated. Three different insolubilized ligands were compared using a pure rabbit muscle phosphofructokinase. N6-[(6-aminohexyl)-carbamoyl-methyl]-ATP-Sepharose bound at least 90 times more enzyme than either N6-(6-aminohexyl)-AMP-agarose or ATP-adipic acid hydrazide-Sepharose. The elution of phosphofructokinase from the ATP-Sepharose with various metabolites and combinations of metabolites was investigated. The enzyme is eluted specifically from N6-[(6-aminohexyl)-carbamoyl]-ATP-Sepharose with a mixture of 25 μm each of fructose 6-phosphate and ADP (±Mg2+). The enzyme is not eluted either with ATP (25 μm), fructose 1,6-diphosphate (1 mm), ADP (25 μm), fructose 6-phosphate (1 mm) alone, or with a mixture of fructose 1,6-diphosphate (25 μm) and ATP (25 μm). The recovery of bound enzyme was usually greater than 90%. A mixture of glucose 6-phosphate and ADP or a mixture of IDP and fructose 6-phosphate also elutes the enzyme, but the recovery with these eluants was only about 40%. It was concluded that the “dead-end” complex is the most effective in the elution. Using this method, phosphofructokinase has been prepared in an essentially homogeneous form from muscle and brain of rabbit and rat. The overall isolation procedure involves a high speed centrifugation of crude extracts which sediments phosphofructokinase as a pellet, followed with adsorption on N6-[(6-aminohexyl)-carbamoyl-methyl]-ATP-Sepharose and specific elution with the mixture of fructose 6-phosphate and ADP.  相似文献   

6.
Phosphofructokinase was purified 1200-fold from extracts of Escherichia coli B. Kinetic studies of the enzyme were carried out in the presence of the fluorescent dye 8-anilino-1-naphthalenesulfonate (1,8-ANS). 1,8-ANS was competitive with ATP and an uncompetitive inhibitor with respect to fructose-6-P. These parabolic inhibitions were accounted for by assuming that at least two molecules of the inhibitor were responsible for decreasing the affinity of the enzyme for ATP. ADP and GDP are both positive effectors for E. coli Phosphofructokinase. Evidence is presented to indicate that 1,8-ANS binding decreases the affinity of a regulatory site for ADP but not the binding site for regulation by GDP.  相似文献   

7.
The assimilation of NH4+ causes a rapid increase in respiration to provided carbon skeletons for amino acid synthesis. In this study we propose a model for the regulation of carbon partitioning from starch to respiration and N assimilation in the green alga Selenastrum minutum. We provide evidence for both a cytosolic and plastidic fructose-1,6-bisphosphatase. The cytosolic form is inhibited by AMP and fructose-1,6-bisphosphate and the plastidic form is inhibited by phosphate. There is only one ATP dependent phosphofructokinase which, based on immunological cross reactivity, has been identified as being localized in the plastid. It is inhibited by phosphoenolpyruvate and activated by phosphate. No pyrophosphate dependent phosphofructokinase was found. The initiation of dark ammonium assimilation resulted in a transient increase in ADP which releases pyruvate kinase from adenylate control. This activation of pyruvate kinase causes a rapid 80% drop in phosphoenolpyruvate and a 2.7-fold increase in pyruvate. The pyruvate kinase mediated decrease in phosphoenolpyruvate correlates with the activation of the ATP dependent phosphofructokinase increasing carbon flow through the upper half of glycolysis. This increased the concentration of triosephosphate and provided substrate for pyruvate kinase. It is suggested that this increase in triosephosphate coupled with the glutamine synthetase mediated decline in glutamate, serves to maintain pyruvate kinase activation once ADP levels recover. The initiation of NH4+ assimilation causes a transient 60% increase in fructose-2,6-bisphosphate. Given the sensitivity of the cytosolic fructose-1,6-bisphosphatase to this regulator, its increase would serve to inhibit cytosolic gluconeogenesis and direct the triosephosphate exported from the plastid down glycolysis to amino acid biosynthesis.  相似文献   

8.
Luit Slooten  Adriaan Nuyten 《BBA》1984,766(1):88-97
(1) Rates of ATP synthesis and ADP-arsenate synthesis catalyzed by Rhodospirillum rubrum chromatophores were determined with the firefly luciferase method and by a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase. (2) Vm for ADP-arsenate synthesis was about 2-times lower than Vm for ATP-synthesis. With saturating [ADP], K(Asi) was about 20% higher than K(Pi). With saturating [anion], K(ADP) was during arsenylation about 20% lower than during phosphorylation. (3) Plots of 1v vs. 1[substrate] were non-linear at low concentrations of the fixed substrate. The non-linearity was such as to suggest a positive cooperativity between sites binding the variable substrate, resulting in an increased VmKm ratio. High concentrations of the fixed substrate cause a similar increase in VmKm, but abolish the cooperativity of the sites binding the variable substrate. (4) Low concentrations of inorganic arsenate (Asi) stimulate ATP synthesis supported by low concentrations of Pi and ADP about 2-fold. (5) At high ADP concentrations, the apparent Ki of Asi for inhibition of ATP-synthesis was 2–3-times higher than the apparent Km of Asi for arsenylation; the apparent Ki of Pi for inhibition of ADP-arsenate synthesis was about 40% lower than the apparent Km of Pi for ATP synthesis. (6) The results are discussed in terms of a model in which Pi and Asi compete for binding to a catalytic as well as an allosteric site. The interaction between these sites is modulated by the ADP concentration. At high ADP concentrations, interaction between these sites occurs only when they are occupied with different species of anion.  相似文献   

9.
The purine nucleotide derivative, 5′-p-fluorosulfonylbenzoyl adenosine (5′-FSO2BZAdo) functions as an affinity label for the allosteric sites of phosphofructokinase. The modified enzyme at pH 6.9 is insensitive to allosteric inhibition by ATP, activation by AMP, c-AMP, ADP and shows no sigmoidal kinetics for fructose-6-P. The reaction does not appear to occur at the catalytic site since modification of the enzyme does not significantly affect its specific activity nor its Michaelis constant at pH 8.2. ADP, and to a much lesser degree AMP and ATP, protects the enzyme from modification by the adenosine reagent. The modified enzyme essentially does not bind significant amounts of AMP, c-AMP, ADP, but still binds an analog of ATP, AppNHp. The adenosine affinity label will be of value in studies on the nature of the AMP-ADP allosteric sites.  相似文献   

10.
The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions.  相似文献   

11.
6-Phosphofructo-2-kinase (ATP: D-fructose-6-phosphate-2-phosphotransferase) and D-fructose-2,6-bisphosphatase activities have been found in extracts prepared from etiolated mung bean seedlings. The activity of 6-phosphofructo-2-kinase exhibits a sigmoidal shape in response to changes in concentrations of both substrates, D-fructose 6-phosphate and ATP (S0.5 values of 1.8 and 1.2 mM, respectively). Inorganic orthophosphate (Pi) has a strong stimulating effect on the 2-kinase activity (A0.5 at about 2 mM), moderately increasing the Vmax and modifying the response into hyperbolic curves with Km values of 0.4 and 0.2 mM for fructose 6-phosphate and ATP, respectively. 3-Phosphoglycerate (I0.5 about 0.15 mM) partially inhibited the kinase activity by counteracting the Pi activation. In contrast, the activity of D-fructose-2,6-bisphosphatase (Km 0.38 mM) is strongly inhibited by Pi (I0.5 0.8 mM) lowering its affinity to fructose-2,6-P2 (Km 1.4 mM). 3-Phosphoglycerate activites the enzyme (A0.5 at about 0.3 mM) without causing a significant change in its Km for fructose-2,6-P2. The activities of both of these enzymes in relationship to the metabolic role of D-fructose 2,6-bisphosphate in the germinating seed is discussed.  相似文献   

12.
Carbon-14 was incorporated into C-6 of glucose from [1-14C]galactose during gluconeogenesis from dihydroxyacetone in liver cells from fasted rats, proving the existence of a futile cycle between fructose-6-P and fructose-1,6-P2 under the conditions used. Using a steady-state model and assumed values for the rates of aldolase and glucose-6-P isomerase, the rates of phosphofructokinase were estimated, ranging from about 15% to nearly 40% of the net rate of gluconeogenesis. Glucagon depressed the rate of phosphofructokinase by as much as 85% and increased the rate of gluconeogenesis by up to 45%. l-epinephrine in the range from 10 to 100 μm also depressed phosphofructokinase, being nearly as effective as glucagon only at high concentrations. The effect of epinephrine was only partially reversed by 10 μm dl-propranolol. Ethanol (10 mm) depressed phosphofructokinase flux nearly as well as glucagon, but had no significant effect on the rate of gluconeogenesis from dihydroxyacetone.  相似文献   

13.
Purified (200-fold) glycogen phosphorylase (EC 2.4.1.1) of Streptococcus salivarius was activated by AMP and NaF when assayed both in the direction of synthesis and in the direction of phosphorolysis. Activation by NaF + AMP was greater than the sum of their individual effects. In the direction of synthesis, the Km for AMP was 0.25 mm and was decreased to 0.125 mm in the presence of NaF. The Km for NaF was 0.49 m and was decreased to 0.40 m in the presence of AMP. Glycogen phosphorolysis was similarly affected by AMP and NaF, except that above a concentration of 2 mm AMP was inhibitory. The effects of AMP and NaF were reversible since preincubation with these compounds, followed by dialysis, restored activity almost to the control values although some inhibition of enzyme activity was noted with the samples preincubated with NaF. The presence of both NaF and AMP had no effect on the Km values for glucose-1-P and glycogen in the direction of synthesis, but increased the V of the enzyme.When assayed in the absence of AMP and NaF in the direction of synthesis, the enzyme was slightly inhibited by glucose and glucose-6-P, and activated by P-enolpyruvate and ADP-glucose. In the presence of AMP and NaF, the enzyme was inhibited by glucose, glucose-6-P and ADP-glucose, but was activated by P-enolpyruvate. Fructose-1,6-P2 had no effect on the enzyme. The enzyme was further activated in the absence of AMP and NaF by adenosine, ATP, GMP, cyclic AMP and ADP, and was slightly inhibited by GTP and GDP. In the presence of AMP and NaF, however, these compounds, with the exception of adenosine, either did not show any effect or were slightly inhibitory. Adenosine was slightly stimulatory with NaF + AMP, but not with AMP alone. In the direction of phosphorolysis, the enzyme was inhibited by glucose and ADP-glucose, and activated by P-enolpyruvate, fructose-1,6-P2 and ATP, both in the presence and absence of AMP + NaF.  相似文献   

14.
The allosteric properties of platelet actomyosin and myosin have been further studied. At pH 7.2, both exhibit sigmoid kinetics with at least two interacting ATP binding sites. At pH 8.9, the velocity versus substrate curve is shifted to the right and becomes more sigmoidal. In contrast, at pH 5.5, the enzyme appears to follow hyperbolic kinetics and the Km is reduced. In the presence of 1.4 m urea, the sigmoidicity is lost and the enzyme obeys Michaelis-Menten kinetics. The effect of ADP on the ATPase activity was also investigated. ADP shows characteristics of a competitive inhibitor; it increases Km (shifts sigmoid curve to the right) without affecting V. When the enzyme is desensitized by low pH (5.5) or urea (1.4 m), the allosteric interaction is abolished without impairing the catalytic activity and ADP is no longer inhibitory. These findings suggest that platelet myosin possesses two interacting sites and that ADP binds to the allosteric site which appears to be different from the catalytic site.  相似文献   

15.
Incubation of the isolated H+-ATPase from chloroplasts, CF0F1, with 2-azido-[α-32P]ATP leads to the binding of this nucleotide to different sites. These sites were identified after removal of free nucleotides, UV-irradiation and trypsin treatment by separation of the tryptic peptides by ion exchange chromatography. The nitreno-AMP, nitreno-ADP and nitreno-ATP peptides were further separated on a reversed phase column, the main fractions were subjected to amino acid sequence analysis and the derivatized tyrosines were used to distinguish between catalytic (β-Tyr362) and non-catalytic (β-Tyr385) sites. Several incubation procedures were developed which allow a selective occupation of each of the three non-catalytic sites. The non-catalytic site with the highest dissociation constant (site 6) becomes half maximally filled at 50 μM 2-azido-[α-32P]ATP, that with the intermediate dissociation constant (site 5) at 2 μM. The ATP at the site with the lowest dissociation constant had to be hydrolyzed first to ADP before a replacement by 2-azido-[α-32P]ATP was possible. CF0F1 with non-covalently bound 2-azido-[α-32P]ATP and after covalent derivatization was reconstituted into liposomes and the rates of ATP synthesis as well as ATP hydrolysis were measured after energization of the proteoliposomes by ΔpH/Δϕ. Non-covalent binding of 2-azido-ATP to any of the three non-catalytic sites does not influence ATP synthesis and ATP hydrolysis, whereas covalent derivatization of any of the three sites inhibits both, the degree being proportional to the degree of derivatization. Extrapolation to complete inhibition indicates that derivatization of one site (either 4 or 5 or 6) is sufficient to block completely multi-site catalysis. The rates of ATP synthesis and ATP hydrolysis were measured as a function of the ADP and ATP concentration from uni-site to multi-site conditions with covalently derivatized and non-derivatized CF0F1. Uni-site ATP synthesis and ATP hydrolysis were not inhibited by covalent derivatization of any of the non-catalytic sites, whereas multi-site catalysis is inhibited. These results indicate that multi-site catalysis requires some flexibility between β- and α-subunits which is abolished by covalent derivatization of β-Tyr385 with a 2-nitreno-adenine nucleotide. Conformational changes connected with energy transduction between the F0-part and the F1-part are either not required for uni-site ATP synthesis or they are not impaired by the derivatization of any of the three β-Tyr385.  相似文献   

16.
A fructose diphosphatase–phosphofructokinase substrate cycle has been reconstructed in vitro to provide a system that recycles fructose 6-phosphate and hydrolyses ATP to ADP and Pi. The concerted actions of glucose phosphate isomerase, phosphofructokinase, aldolase and triose phosphate isomerase catalysed the loss of 3H from [5-3H,U-14C]glucose 6-phosphate. This was used as the basis of a method for the estimation of the fructose diphosphatase–phosphofructokinase substrate cycle. For the reconstructed cycle, the rate of decrease of the 3H/14C ratio in [5-3H,U-14C]hexose 6-phosphate was proportional to the rate of fructose 6-phosphate substrate cycling. A detailed theoretical treatment of this relationship is developed, which enables the rate of substrate cycling to be determined in vivo.  相似文献   

17.
《BBA》1987,894(2):165-173
The capacity of ribulose-1,5-bisphosphate carboxylase to bind reversibly chloroplast metabolites which are the substrates for both thylakoid and stromal enzymes was assessed using spinach chloroplasts and chloroplast extracts and with pure wheat ribulose-1,5-bisphosphate carboxylase. Measurements of the rate of coupled electron flow to methyl viologen in ‘leaky’ chloroplasts (which retained the chloroplast envelope and stromal enzymes but which were permeable to metabolites) and also with broken chloroplasts and washed thylakoids were used to study the effects of binding ADP and inorganic phopshate to ribulose-1,5-bisphosphate carboxylase. The presence of ribulose-1,5-bisphosphate carboxylase significantly altered the values obtained for apparent Km for inorganic phosphate and ADP of coupled electron transport. The Km (Pi) in washed thylakoids was 60–80 μM, in ‘leaky’ chloroplasts it was increased to 180–200 μM, while in ‘leaky’ chloroplasts preincubated with KCN and ribulose 1,5-bisphosphate the value was decreased to 40–50 μM. Similarly, the Km (ADP) of coupled electron transport in washed thylakoids was 60–70 μM, in ‘leaky’ chloroplasts it was 130–150 μM and with ‘leaky’ chloroplasts incubated in the presence of KCN and ribulose 1,5-bisphosphate a value of 45–50 μM was obtained. The ability of ribulose 1,5-bisphosphate carboxylase to reduce the levels of free glycerate 3-phosphate in the absence of ribulose 1,5-bisphosphate was examined using a chloroplast extract system by varying the concentrations of stromal protein or purified ribulose 1,5-bisphosphate carboxylase. The effect of binding glycerate 3-phosphate to ribulose-1,5-bisphosphate carboxylase on glycerate 3-phosphate reduction was to reduce both the rate an the amount of NADPH oxidation for a given amount of glycerate 3-phosphate added. The addition of ribulose 1,5-bisphosphate reinitiated NADPH oxidation but ATP or NADPH did not. Incubation of purified ribulose-1,5-bisphosphate carboxylase with carboxyarabinitolbisphosphate completely inhibited the catalytic activity of the enzyme and decreased inhibition of glycerate-3-phosphate reduction. Two binding sites with different affinities for glycerate 3-phosphate were observed with pure ribulose-1,5-bisphosphate carboxylase.  相似文献   

18.
The effects of cold hypoxia were examined during a time-course at 2 °C on levels of glycolytic metabolites: glycogen, glucose, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, lactate and energetics (ATP, ADP, AMP) of livers from rats and columbian ground squirrels. Responses of adenylate pools reflected the energy imbalance created during cold hypoxia in both rat and ground squirrel liver within minutes of organ isolation. In rat, ATP levels and energy charge values for freshly isolated livers were 2.54 mol·g-1 and 0.70, respectively. Within 5 min of cold hypoxia, ATP levels had dropped well below control values and by 8 h storage, ATP, AMP, and energy charge values were 0.21 mol·g-1, 2.01 mol·g-1, and 0.17, respectively. In columbian ground squirrels the patterns of rapid ATP depletion and AMP accumulation were similar to those found in rat. In rat liver, enzymatic regulatory control of glycolysis appeared to be extremely sensitive to the decline in cellular energy levels. After 8 h cold hypoxia levels of fructose-6-phosphate decreased and fructose-1,6-bisphosphate increased, thus reflecting an activation of glycolysis at the regulatory step catalysed by phospho-fructokinase fructose-1,6-bisphosphatase. Despite an initial increase in flux through glycolysis over the first 2 min (lactate levels increased 3.7 mol·g-1), further flux through the pathway was not permitted even though glycolysis was activated at the phosphofructokinase/fructose-1,6-bisphosphatase locus at 8 h, since supplies of phosphorylated substrate glucose-1-phosphate or glucose-6-phosphate remained low throughout the duration of the 24-h period. Conversely, livers of Columbian ground squirrels exhibited no activation or inactivation of two key glycolytic regulatory loci, phosphofructokinase/fructose-1,6-bisphosphatase and pyruvate kinase/phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Although previous studies have shown similar allosteric sensitivities to adenylates to rat liver phospho-fructokinase, there was no evidence of an activation of the pathway as a result of decreasing high energy adenylate, ATP or increasing AMP levels. The lack of any apparent regulatory control of glycosis during cold hypoxia may be related to hibernator-specific metabolic adaptations that are key to the survival of hypothermia during natural bouts of hibernation.Abbreviations DHAP dihydroxyacetonephosphate - EC energy charge - F1,6P2 fructose-1,6-bisphosphate - F2,6P2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphatase - G1P glucose-1-phosphate - G6P glucose-6-phosphate - GAP glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - L/R lactobionate/raffinose-based solution - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PEPCK & PC phosphoenolpyruvate carboxykinase and pyruvate carboxylase - PFK phosphofructokinase; PK, pyruvate kinase - Q 10 the effect of a 10 °C drop in temperature on reaction rates (generally, Q 10=2–3) - TA total adenylates - UW solution University of Wisconsin solution (L/R-based)  相似文献   

19.
《BBA》1986,849(1):121-130
The binding of 3′-O-(1-naphthoyl)adenosinetriphosphate (1-naphthoyl-ATP), ATP and ADP to TF1 and to the isolated α and β subunits was investigated by measuring changes of intrinsic protein fluorescence and of fluorescence anisotropy of 1-naphthoyl-ATP upon binding. The following results were obtained. (1) The isolated α and β subunits bind 1 mol 1-naphthoyl-ATP with a dissociation constant (KD(1-naphthoyl-ATP)) of 4.6 μM and 1.9 μM, respectively. (2) The KD(ATP) for α and β subunits is 8 μM and 11 μM, respectively. (3) The KD(ADP) for α and β subunits is 38 μM μM and 7 μM, respectively. (4) TF1 binds 2 mol 1-naphthoyl-ATP per mol enzyme with KD = 170 nM. (5) The rate constant for 1-naphthoyl-ATP binding to α and β subunit is more than 5 · 104 M−1s−1. (6) The rate constant for 1-naphthoyl-ATP binding to TF1 is 6.6 · 103 M−1 · s−1 (monophasic reaction); the rate constant for its dissociation in the presence of ATP is biphasic with a fast first phase (kA−1 = 3 · 10−3s−1) and a slower second phase (kA−2 < 0.2 · 10−3s−1). From the appearance of a second peak in the fluorescence emission spectrum of 1-naphthoyl-ATP upon binding it is concluded that the binding sites in TF1 are located in an environment more hydrophobic than the binding sites on isolated α and β subunits. The differences in kinetic and thermodynamic parameters for ligand binding to isolated versus integrated α and β subunits, respectively, are explained by interactions between these subunits in the enzyme complex.  相似文献   

20.
Fructose-1-phosphate-6-sulfate was prepared by direct sulfurylation of fructose, and selective phosphorylation of the 6-sulfuryl isomer by phosphofructokinase. The ketose derivative was used as a substrate for aldolase and fructose-1,6-diphosphatase. Kinetic studies with aldolase showed that the alternative substrate binds one third as well as fructose-1,6-P2 yet 900 fold greater than fructose-1-P. The Vm was intermediate between the two ketose phosphates. From kinetic studies with skeletal muscle fructose-1,6-diphosphatase at pH 7.5 a Km of 8 μM and a Vm approximately 6% that for fructose-1,6-P2 was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号