首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate the cytotoxic potential of Aristolochia foetida Kunth. Stems and leaves of A. foetida Kunth (Aristolochiaceae) have never been investigated pharmacologically. Recent studies of species of the Aristolochiaceae family found significant cytotoxic activities. Hexane, dichloromethane, ethyl acetate and methanol extracts were analyzed by 1H NMR and GC–MS to know the metabolites in each extract. In GC–MS analysis, the main compounds were methyl hexadecanoate (3); hexadecanoic acid (4); 2-butoxyethyl dodecanoate (9); ethyl hexadecanoate (20); methyl octadeca-9,12,15-trienoate (28) and (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid (40). The results showed a significant reduction in cell viability of the MCF-7 (breast cancer) cell line caused by organic extracts in a dose-dependent manner. The cytotoxicity activity of the dichloromethane extract from the stems (DSE) showed IC50 values of 45.9 μg/mL and the dichloromethane extract of the leaves (DLE) showed IC50 values of 47.3 μg/mL. DSE and DLE had the highest cytotoxic potential in an in vitro study against the MCF-7 cell line and non-tumor cells obtained from the bovine mammary epithelial (bMECs). DSE and DLE induced a loss in mitochondrial membrane potential (ΔΨm) and can cause cell death by apoptosis through the intrinsic pathway in the MCF-7 cell line. DSE and DLE are cytotoxic in cancer cells and cause late apoptosis. Higher concentrations of DSE and DLE are required to induce a cytotoxic effect in healthy mammary epithelial cells. This is the first report of the dichloromethane extract of A. foetida Kunth that induces late apoptosis in MCF-7 cancer cells and may be a candidate for pharmacological study against breast cancer.  相似文献   

2.
CXCR4 is involved in various diseases such as inflammation, tumor growth, and cancer metastasis through the interaction with its natural endogenous ligand, chemokine CXCL12. In an effort to develop imaging probes for CXCR4, we developed a novel small molecule CXCR4-targeted PET agent (compound 5) by combining our established benzenesulfonamide scaffold with a labeling component by virtue of click chemistry. 5 shows nanomolar affinity (IC50 = 6.9 nM) against a known CXCR4 antagonist (TN14003) and inhibits more than 65% chemotaxis at 10 nM in vitro assays. Radiofluorinated compound 5 ([18F]5) demonstrates a competitive cellular uptake against CXCL12 in a dose-dependent manner. Further, microPET images of [18F]5 exhibits preferential accumulation of radioactivity in the lesions of λ-carrageenan-induced paw edema, human head and neck cancer orthotopic xenograft, and metastatic lung cancer of each mouse model.  相似文献   

3.
Many human diseases, including cystic fibrosis lung infections, are caused or exacerbated by bacterial biofilms. Specialized modes of motility, including swarming and twitching, allow gram-negative bacteria to spread across surfaces and form biofilms. Compounds that inhibit these motilities could slow the spread of biofilms, thereby allowing antibiotics to work better. We previously demonstrated that a set of plant-derived triterpenes, including oleanolic acid and ursolic acid, inhibit formation of Escherichia coli and Pseudomonas aeruginosa biofilms, and alter expression of genes involved in chemotaxis and motility. In the present study, we have prepared a series of analogs of oleanolic acid. The analogs were evaluated against clinical isolates of E. coli and P. aeruginosa in biofilm formation assays and swarming assays. From these analogs, compound 9 was selected as a lead compound for further development. Compound 9 inhibits E. coli biofilm formation at 4 µg/mL; it also inhibits swarming at ≤1 µg/mL across multiple clinical isolates of P. aeruginosa, E. coli, Burkholderia cepacia, and Salmonella enterica, and at <0.5 µg/mL against multiple agricultural strains. Compound 9 also potentiates the activity of the antibiotics tobramycin and colistin against swarming P. aeruginosa; this is notable, as tobramycin and colistin are inhaled antibiotics commonly used to treat P. aeruginosa lung infections in people with cystic fibrosis. qPCR experiments suggested that 9 alters expression of genes involved in regulating Type IV pili; western blots confirmed that expression of Type IV pili components PilA and PilY1 decreases in P. aeruginosa in the presence of 9.  相似文献   

4.
Proguanil, a member of biguanide family, has excellent anti-proliferative activities. Fluorine-containing compounds have been demonstrated to have super biological activities including enhanced binding interactions, metabolic stability, and reduced toxicity. In this study, based on the intermediate derivatization methods, we synthesized 13 new fluorine-containing proguanil derivatives, and found that 7a,7d and 8e had much lower IC50 than proguanil in 5 human cancerous cell lines. The results of clonogenic and scratch wound healing assays revealed that the inhibitory effects of derivatives 7a,7d and 8e on proliferation and migration of human cancer cell lines were much better than proguanil as well. Mechanistic study based on representative derivative 7a indicated that this compound up-regulates AMPK signal pathway and downregulates mTOR/4EBP1/p70S6K. In conclusion, these new fluorine-containing derivatives show potential for the development of cancer chemotherapeutic drugs.  相似文献   

5.
Here, we present the design, synthesis, and SAR of dual orexin 1 and 2 receptor antagonists, which were optimized by balancing the antagonistic activity for orexin receptors and lipophilicity. Based on the prototype compound 1, ring construction and the insertion of an additional heteroatom into the resulting ring led to the discovery of orexin 1 and 2 receptor antagonists, which were 3-benzoyl-1,3-oxazinane derivatives. Within these derivatives, (−)-3h enabled a high dual orexin receptor antagonistic activity and a low lipophilicity. Compound (−)-3h exhibited potent sleep-promoting effects at a po dose of 1 mg/kg in a rat polysomnogram study, and optimal PK properties with a rapid Tmax and short half-lives in rats and dogs were observed, indicating a predicted human half-life of 0.9–2.0 h. Thus, (−)-3h (ORN0829; investigation code name, TS-142) was selected as a viable candidate and is currently in clinical development for the treatment of insomnia.  相似文献   

6.
This article reports for the first time the synthesis of some novel β-lactam morpholino-1,3,5-triazine hybrids by a [2+2]-cycloaddition reaction of imines 7a–c, 9a–c and 11 with ketenes derived from substituted acetic acids. The reaction was totally diastereoselective, leading exclusively to the formation of cis-β-lactams 8a–l, 10a–f and 12a–c. The synthesized compounds were tested for activity towards SW1116, MCF-7 and HepG2 cancer cell lines and non-cancerous HEK-293 cell line by MTT assay. None of the compounds exert an observable effect on HepG2, MCF-7 and HEK-293 cells, but compounds 7b, 8f, 8g, 8l, 10c, and 10e exhibited excellent growth inhibitory activity (IC50 < 5 µM) against SW 1116 cells, comparable to that of doxorubicin (IC50 = 6.9 µM). An evaluation of the antioxidant potential of each of the compounds, performed by diphenylpicrylhydrazyl (DPPH) assay, indicated that 7b, 9a, 9b and 9c have strong free radical scavenging activity. UV absorption titration studies reveal that 7b, 8l, 8g and 8f interact strongly with calf-thymus DNA (CT-DNA) in the order of 8l > 7b > 8f > 8g. Collectively, the in vitro capabilities of some of these morpholino-triazine imines and β-lactams suggest possible applications to development of new antioxidants and DNA binding therapeutics.  相似文献   

7.
Immunomodulation activity-guided fractionation of ethanol extract of Brugmansia suaveolens leaves was carried out to isolate a novel compound SUPH036-022A (1) by co-culturing the test fraction/compound activated PBMC with MCF7 and A549 cancer cell lines. Assessment of immune markers in PBMC, and analysis of apoptosis markers and cell cycle was carried out for cancer cells. The structure of the isolated compound was elucidated by spectral analysis. Compound 1 enhanced the secretion of immune markers, IL-2 and IFN-γ, from PBMC. Further, compound 1 treated PBMC increased cell death in MCF7 and A549 cell lines and induced ROS production and mitochondrial membrane perturbation, leading to apoptosis. Flow cytometry analysis revealed; compound 1 stimulated PBMC to cause a five-fold increase in cell cycle perturbations in the sub-G1 stage of cancer cells as compared to the negative control. The compound, in the absence of PBMC, only had a weak cytotoxic activity against these cell lines. Thus, compound 1 is a novel lead for immunomodulation-mediated anticancer activity.  相似文献   

8.
HCV utilizes cellular protein cyclophilins in the virus replication cycle and cyclophilin inhibitors have become a new class of anti-HCV agents. In our screening of natural products, we identified a unique cyclosporin analogue, FR901459, as a cyclophilin inhibitor with potent anti-HCV activity. In this work, we developed an efficient synthetic methodology to prepare FR901459 derivatives via an N, O-acyl migration reaction. This method allows us to efficiently manipulate the amino acid residues at the 3 position while avoiding lengthy total synthesis for each compound. By using this methodology, we discovered 4, which has superior anti-HCV activity and decreased immunosuppressive activity compared to FR901459.  相似文献   

9.
A series of (3-hydroxypyridin-4-one)-coumarin hybrids were developed and investigated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through the incorporation of iron-chelating and monoamine oxidase B (MAO-B) inhibition. This combination endowed the hybrids with good capacity to inhibit MAO-B as well as excellent iron-chelating effects. The pFe3+ values of the compounds were ranging from 16.91 to 20.16, comparable to more potent than the reference drug deferiprone (DFP). Among them, compound 18d exhibited the most promising activity against MAO-B, with an IC50 value of 87.9 nM. Moreover, compound 18d exerted favorable antioxidant activity, significantly reversed the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. More importantly, 18d remarkably ameliorated the cognitive dysfunction in a scopolamine-induced mice AD model. In brief, a series of hybrids with potential anti-AD effect were successfully obtained, indicating that the design of iron chelators with MAO-B inhibitory and antioxidant activities is an attractive strategy against AD progression.  相似文献   

10.
The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25–25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress.  相似文献   

11.
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.  相似文献   

12.
Azurin protein of Pseudomonas aeruginosa is an anti-tumor agent against breast cancer and mammaglobin-A (MAM-A) protein is a specific antigen on the surface of MCF-7 for induction of cellular immune. The purpose of the present study was to investigate the effects of simultaneous expression of azurin and human MAM-A genes on the mRNA expression level of apoptosis-related and cell cycle genes in MCF-7 breast cancer cell line. The recombinant or empty plasmids were separately transferred into MCF-7 cells using Lipofectamine reagent. Flow cytometry was done to detect cell death and apoptosis. The expression of azurin and MAM-A genes were evaluated by IF assay, RT-PCR and western blot methods. Finally, apoptosis-related and cell cycle genes expression was examined in transformed and non-transformed MCF-7 cells by qPCR method. The successful expression of azurin and MAM-A genes in the MCF-7 cell were confirmed by RT-PCR, IF and western blotting. The apoptosis assay was showed a statistically significant (p < 0.05) difference after transfection. The expression of BAK, FAS, and BAX genes in transformed cells compare with non-transformed and transformed MCF-7 by pBudCE4.1 were increased statistically significant (p < 0.05) increases. Although, the increase of SURVIVIN and P53 expressions in transformed cells were not statistically significant (p > 0.05). Co-expression of azurin and MAM-A genes could induce apoptosis and necrosis in human MCF-7 breast cancer cells by up-regulation of BAK, FAS, and BAX genes. In future researches, it must be better the immune stimulation of pBudCE4.1-azurin-MAM-A recombinant vector in animal models and therapeutic approaches will be evaluated.  相似文献   

13.
The exploitation of GLU988 and LYS903 residues in PARP1 as targets to design isoquinolinone (I & II) and naphthyridinone (III) analogues is described. Compounds of structure I have good biochemical and cellular potency but suffered from inferior PK. Constraining the linear propylene linker of structure I into a cyclopentene ring (II) offered improved PK parameters, while maintaining potency for PARP1. Finally, to avoid potential issues that may arise from the presence of an anilinic moiety, the nitrogen substituent on the isoquinolinone ring was incorporated as part of the bicyclic ring. This afforded a naphthyridinone scaffold, as shown in structure III. Further optimization of naphthyridinone series led to identification of a novel and highly potent PARP1 inhibitor 34, which was further characterized as preclinical candidate molecule. Compound 34 is orally bioavailable and displayed favorable pharmacokinetic (PK) properties. Compound 34 demonstrated remarkable antitumor efficacy both as a single-agent as well as in combination with chemotherapeutic agents in the BRCA1 mutant MDA-MB-436 breast cancer xenograft model. Additionally, compound 34 also potentiated the effect of agents such as temozolomide in breast cancer, pancreatic cancer and Ewing’s sarcoma models.  相似文献   

14.
NDM-1 can hydrolyze nearly all available β-lactam antibiotics, including carbapenems. NDM-1 producing bacterial strains are worldwide threats. It is still very challenging to find a potent NDM-1 inhibitor for clinical use. In our study, we used a metal-binding pharmacophore (MBP) enriched virtual fragment library to screen NDM-1 hits. SPR screening helped to verify the MBP virtual hits and identified a new NDM-1 binder and weak inhibitor A1. A solution NMR study of 15N-labeled NDM-1 showed that A1 disturbed all three residues coordinating the second zinc ion (Zn2) in the active pocket of NDM-1. The perturbation only happened in the presence of zinc ion, indicating that A1 bound to Zn2. Based on the scaffold of A1, we designed and synthesized a series of NDM-1 inhibitors. Several compounds showed synergistic antibacterial activity with meropenem against NDM-1 producing K. pneumoniae.  相似文献   

15.
Radioligand therapy (RLT) using prostate-specific membrane antigen (PSMA) targeting ligands is an attractive option for the treatment of Prostate cancer (PCa) and its metastases. We report herein a series of radioiodinated glutamate-urea-lysine-phenylalanine derivatives as new PSMA ligands in which l-tyrosine and l-glutamic acid moieties were added to increase hydrophilicity concomitant with improvement of in vivo targeting properties. Compounds 8, 15, 19a/19b and 23a/23b were synthesized and radiolabeled with 125I by iododestannylation. All iodinated compounds displayed high binding affinities toward PSMA (IC50 = 1–13 nM). In vitro cell uptake studies demonstrated that compounds containing an l-tyrosine linker moiety (8, 15 and 19a/19b) showed higher internalization than MIP-1095 and 23a/23b, both without the l-tyrosine linker moiety. Biodistribution studies in mice bearing PC3-PIP and PC3 xenografts showed that [125I]8 and [125I]15 with higher lipophilicity exhibited higher nonspecific accumulations in the liver and intestinal tract, whereas [125I]19a/19b and [125I]23a/23b containing additional glutamic acid moieties showed higher accumulations in the kidney and implanted PC3-PIP (PSMA+) tumors. [125I]23b displayed a promising biodistribution profile with favorable tumor retention, fast clearance from the kidney, and 2–3-fold lower uptake in the liver and blood than that observed for [125I]MIP-1095. [125/131I]23b may serve as an optimal PSMA ligand for radiotherapy treatment of prostate cancer over-expressing PSMA.  相似文献   

16.
Multi-drug resistant tuberculosis (MDR-TB) represents a growing problem for global healthcare systems. In addition to 1.3 million deaths in 2018, the World Health Organisation reported 484,000 new cases of MDR-TB. Isoniazid is a key anti-TB drug that inhibits InhA, a crucial enzyme in the cell wall biosynthesis pathway and identical in Mycobacterium tuberculosis and M. bovis. Isoniazid is a pro-drug which requires activation by the enzyme KatG, mutations in KatG prevent activation and confer INH-resistance. ‘Direct inhibitors’ of InhA are attractive as they would circumvent the main clinically observed resistance mechanisms. A library of new 1,5-triazoles, designed to mimic the structures of both triclosan molecules uniquely bound to InhA have been synthesised. The inhibitory activity of these compounds was evaluated using isolated enzyme assays with 2 (5-chloro-2-(4-(5-(((4-(4-chloro-2-hydroxyphenoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) exhibiting an IC50 of 5.6 µM. Whole-cell evaluation was also performed, with 11 (5-chloro-2-(4-(5-(((4-(cyclopropylmethoxy)benzyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenoxy)phenol) showing the greatest potency, with an MIC99 of 12.9 µM against M. bovis.  相似文献   

17.
Sirtuins (SIRT1–SIRT7) are an evolutionary conserved family of NAD+-dependent protein deacylases regulating the acylation state of ε-N-lysine residues of proteins thereby controlling key biological processes. Numerous studies have found association of the aberrant enzymatic activity of SIRTs with various diseases like diabetes, cancer and neurodegenerative disorders. Previously, we have shown that substituted 2-alkyl-chroman-4-one/chromone derivatives can serve as selective inhibitors of SIRT2 possessing an antiproliferative effect in two human cancer cell lines. In this study, we have explored the bioisosteric replacement of the chroman-4-one/chromone core structure with different less lipophilic bicyclic scaffolds to overcome problems associated to poor physiochemical properties due to a highly lipophilic substitution pattern required for achieve a good inhibitory effect. Various new derivatives based on the quinolin-4(1H)-one scaffold, bicyclic secondary sulfonamides or saccharins were synthesized and evaluated for their SIRT inhibitory effect. Among the evaluated scaffolds, the benzothiadiazine-1,1-dioxide-based compounds showed the highest SIRT2 inhibitory activity. Molecular modeling studies gave insight into the binding mode of the new scaffold-replacement analogues.  相似文献   

18.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   

19.
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.  相似文献   

20.
Antibacterial and cytotoxic activities of Euphorbia balsamifera, fractions and pure compounds were evaluated. The cytotoxic assays for HCT116, HePG2 and MCF7 showed a significant IC50: 54.7 and 76.2 µg/mL of non-polar fraction “n-hexane” against HCT116 and HePG2, respectively. Antibacterial results revealed that plant fractions exhibited significant potential against the tested pathogens than the total extract where n-butanol and ethyl acetate fractions showed significant antibacterial activity (P < 0.05) against tested bacterial strains. Isolation and structure determination of compounds from n-hexane and n-butanol fractions were performed. From n-hexane fraction, 29-nor-cycloartanol (1), lanost-8-en-3-ol (2a), cycloartanol (2b) and kampferol-3,4'-dimethyl ether (3) were isolated and structurally identified, along with 24 compounds were tentatively identified by GC–MS. From the polar n-butanol fraction, 4-O-β-D-glucopyranosyl-2-hydroxy-6-methoxyacetophenone (4), 4-O-α-L-rhamnosyl-(1 → 6)-β-D-glucopyranosyl-2-hydroxy-6methoxy-acetophenone (5), quercetin-3-O-glucopyranoside (6) and isoorientin (7) were assigned. Structures of the obtained compounds were determined by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Except compounds 1 and 5, all reported compounds announced antibacterial efficiency. Compound 2 showed selectively the highest activity against Enterococcus faecalis (22 ± 0.13 mm), meanwhile 4-O-β-D-glucopyranosyl-2-hydroxy-6-methoxyacetophenone (4) showed broadly the highest antibacterial activity with MIC of 1.15–1.88 mg/mL against the test Gram-positive and Gram-negative bacteria. Cytotoxic assays indicated that kampferol-3,4'-dimethyl ether (3) exhibited the highest activity with matching IC50 values to doxorubicin; 111.46, 42.67 and 44.90 µM against HCT116, HePG2 and MCF7, respectively, however, it is toxic on retina normal cell line RPE1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号