共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of intraperitoneal and intra-third ventricular administration of morphine on the hypothalamic corticotropin-releasing factor (CRF) and the pituitary-adrenocortical activity were examined in unanesthetized, freely moving rats. Hypothalamic CRF was measured by rat CRF radioimmunoassay. Intraperitoneal or intra-third ventricular administration of morphine increased blood concentrations of ACTH and corticosterone while intraperitoneal administration tended to increase CRF concentration in the whole hypothalamus including the median eminence and intra-third ventricular administration increased CRF concentration in the hypothalamus excluding the median eminence. However, morphine seemed to inhibit the increase in CRF concentration in the hypothalamus induced by the ether-laparotomy stress. The main site of morphine action on the hypothalamo-pituitary-adrenocortical system seemed to be in the hypothalamic area. 相似文献
2.
Immunocytochemical localization of corticotropin-releasing factor (CRF) in the rat brain 总被引:7,自引:0,他引:7
The immunocytochemical localization of neurons containing the 41 amino acid peptide corticotropin-releasing factor (CRF) in the rat brain is described. The detection of CRF-like immunoreactivity in neurons was facilitated by colchicine pretreatment of the rats and by silver intensification of the diaminobenzidine end-product. The presence of immunoreactive CRF in perikarya, neuronal processes, and terminals in all major subdivisions of the rat brain is demonstrated. Aggregates of CRF-immunoreactive perikarya are found in the paraventricular, supraoptic, medial and periventricular preoptic, and premammillary nuclei of the hypothalamus, the bed nuclei of the stria terminalis and of the anterior commissure, the medial septal nucleus, the nucleus accumbens, the central amygdaloid nucleus, the olfactory bulb, the locus ceruleus, the parabrachial nucleus, the superior and inferior colliculus, and the medial vestibular nucleus. A few scattered perikarya with CRF-like immunoreactivity are present along the paraventriculo-infundibular pathway, in the anterior hypothalamus, the cerebral cortex, the hippocampus, and the periaqueductal gray of the mesencephalon and pons. Processes with CRF-like immunoreactivity are present in all of the above areas as well as in the cerebellum. The densest accumulation of CRF-immunoreactive terminals is seen in the external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. The widespread but selective distribution of neurons containing CRF-like immunoreactivity supports the neuroendocrine role of this peptide and suggests that CRF, similarly to other neuropeptides, may also function as a neuromodulator throughout the brain. 相似文献
3.
K Hashimoto T Hattori K Murakami S Suemaru Y Kawada J Kageyama Z Ota 《Life sciences》1985,36(7):643-647
The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neuro-intermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR. 相似文献
4.
Corticotropin-releasing factor (CRF) plays an important role in the activation of centrally mediated responses to stress. The amygdala, a limbic structure involved in the stress response, has a significant number of CRF cell bodies and CRF receptors. Activation of glutamatergic projections to the amygdala has been implicated in the stress response. Few studies have evaluated neurotransmitter-stimulated CRF release in the amygdala. We measured the effects of glutamate (0.1-1000 microM) and N-methyl-D-aspartate (NMDA, 0.1-1000 microM) on CRF release from the amygdala using primary neuronal cultures from embryonic rat brains (E18-19). Experiments were performed after the cultures grew for 17-20 days. CRF was measured using radioimmunoassay. The excitatory amino acid neurotransmitters, glutamate and NMDA, stimulated CRF release in a concentration-dependent manner. The apparent EC50 values for glutamate and NMDA were 17.5 microM and 12 microM, respectively. Consistent with a NMDA receptor-driven event, glutamate-stimulated CRF release was blocked by the NMDA antagonist, 2-amino-5-phosphonovaleric acid (AP-5, 1-100 microM) and antagonized by the addition of 1.2 mM MgCl2 to the incubation medium. These results implicate an inhibition of CRF release in the amygdala as a possible mechanism for the reported anxiolytic effects of NMDA antagonists. 相似文献
5.
Iontophoretic mapping of corticotropin-releasing factor (CRF) sensitive neurons in the rat forebrain
Iontophoretic application of corticotropin-releasing factor (CRF) onto the membrane of individual brain neurons produced changes in the spontaneous occurrence of their extracellular action potentials. Neurons in the cortex and hypothalamus tended to be excited by the application of this 41-residue peptide, while those in the thalamus and lateral septal area were inhibited. In general, neurons excited by CRF were also inhibited by the local application of dopamine (DA) and morphine (MOR), while those which were inhibited by CRF were excited by DA and MOR. Glutamate excited the majority of cells tested independent of the other peptide responses. The results suggest that CRF activates several CNS regions with some specificity, and may be involved in neuronal modulation of pituitary as well as extrapituitary events. 相似文献
6.
J Sueiras-Diaz D H Coy S Vigh T W Redding W Y Huang I Torres-Aleman A V Schally 《Life sciences》1982,31(5):429-435
The 41-residue sequence of recently identified ovine corticotropin-releasing factor (CRF) was assembled on a benzhydrylamine resin support. Deprotection and cleavage from the resin were accomplished by HF treatment. The crude peptide was purified by gel filtration and reverse-phase, medium pressure, followed by high-performance liquid chromatography (HPLC). In addition to the usual criteria, the homogeneity of the final material, obtained in 7% yield, was assessed by the isolation and examination of cyanogen bromide cleavage and tryptic digestion fragments by HPLC and amino acid analysis. The synthetic 41 amino acid CRF stimulated the release of corticotropin (ACTH) in three in vitro systems: isolated rat pituitary quarters, monolayer cultures of dispersed pituitary cells, and superfused pituitary cells on a column, the responses being related to the log-dose of CRF in the range of 0.05-125 ng/ml. The synthetic peptide also augmented in vivo release of ACTH in rats pretreated with chlorpromazine, morphine, and Nembutal, as assessed by the measurement of serum corticosterone. The data indicates chemical purity and high biological activity of synthetic material. 相似文献
7.
Ether-laparotomy stress produced a rapid increase in rat hypothalamic CRF concentration, followed by a rapid reduction and subsequent increase. Cold-restraint stress significantly reduced hypothalamic CRF concentration at 15 min after stress onset. Serum ACTH and corticosterone levels were significantly elevated at 15 min after the onset of both stresses. The CRF responses in the medulla oblongata were not similar to the hypothalamic CRF responses. Norepinephrine concentration in the hypothalamus was reduced, whereas dopamine concentration in the hypothalamus and medulla oblongata was significantly increased. Epinephrine concentrations in these tissues did not show any significant change throughout the stress period. The observations lead to the following conclusions: hypothalamic CRF plays a major role in stimulating ACTH secretion under acute stress; the reduction in hypothalamic CRF is due to an excess release in the early phase of acute stress; hypothalamic CRF and medulla oblongata CRF are controlled by different mechanisms; norepinephrine in the hypothalamus may not be involved in stimulating hypothalamic CRF secretion in the early phase of acute stress; and catecholamines are regulated differently in the hypothalamus and medulla oblongata. 相似文献
8.
Dopamine and gamma-aminobutyric acid (GABA) inhibit POMC peptide release from the pituitary intermediate lobe, via interaction with D2 or GABA-A/benzodiazepine receptors. Here, we examined the effects of an antianxiety triazolobenzodiazepine, adinazolam, on corticotropin-releasing factor (CRF)-stimulated POMC peptide secretion from the rat neurointermediate pituitary. Neurointermediate lobes (NILS) were incubated with CRF (10(-7) M), then adinazolam (10(-8) or (10(-9) M) was added, with CRF remaining in the medium. Aliquots were removed at 15-min intervals and frozen for radioimmunoassay of beta-endorphin. Adinazolam alone did not significantly affect secretion as compared to controls or CRF alone. Adinazolam incubated with CRF led to significant inhibition of beta-endorphin secretion, as compared to CRF alone. In addition, adinazolam was as effective as dopamine or the CRF antagonist, alpha-helical CRF, in preventing CRF-induced beta-endorphin release. Adinazolam appears to act directly on the pituitary to suppress hormone release induced by a stress-related hypothalamic peptide. 相似文献
9.
Andreev-Andrievskiĭ AA Tsvirkun DV Makarenko EIu Andreeva LA Mart'ianov AA 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2005,91(7):785-790
Centrally administered corticotrophin-releasing factor fragment CRF(4-6) (Pro-Pro-Ile) inhibits components of male rat sexual behaviour. Administration of 1 and 2 microg of tripeptide leads to dose-dependent increase in mount, intromission and ejaculation latencies. Alterations of sexual behaviour parameters suggest suppression of both sexual motivation and sexual performance. 相似文献
10.
Miyata I Shiota C Chaki S Okuyama S Inagami T 《Biochemical and biophysical research communications》2001,280(2):553-557
We have recently isolated a cDNA encoding a short isoform of the corticotropin-releasing factor (CRF) receptor subtype, referred to as CRF(2)alpha-tr, from the rat amygdala. The present study determined the localization of the truncated receptor mRNA in the rat brain by in situ hybridization histochemistry. The results showed significant levels of hybridization in the lateral septum, central nucleus of the amygdala, cortico-amygdaloid nucleus, ventromedial nucleus of the hypothalamus (VMH), and frontal cortex. In the physiological study, antidepressive drugs increased the expression of CRF(2)alpha-tr mRNA and the total binding activity to CRF in the rat amygdala. These findings suggest that CRF(2)alpha-tr may regulate endogeneous CRF release in the amygdala. 相似文献
11.
Additive effects of epinephrine and corticotropin-releasing factor (CRF) on adrenocorticotropin release in rat anterior pituitary cells 总被引:3,自引:0,他引:3
Rabbit antibody was prepared against NADPH-cytochrome c reductase of Tetrahymena microsomes. When examined by the Ouchterlony double diffusion test, anti-NADPH-cytochrome c reductase immunoglobulin formed a single precipitation line with Tetrahymena reductase but not rat liver one. The antibody inhibited the NADPH-cytochrome c reductase activity of Tetrahymena microsomes, but it did not affect either NADH-ferricyanide or NADH-cytochrome c reductase activity of Tetrahymena microsomes. The NADPH-dependent desaturation of stearoyl-CoA in Tetrahymena microsomes was inhibited by anti-reductase immunoglobuline, while the NADH-dependent desaturation was affected by neither anti-reductase nor control immunoglobuline. It was suggested that the temperature associated-alteration of NADPH-cytochrome c reductase activities would be important for regulation of microsomal NADPH-dependent desaturase activities in Tetrahymena which contains no cytochrome P-450. 相似文献
12.
The actions of the corticotropin-releasing factor (CRF) family of peptides are mediated by the seven transmembrane-domain G-protein-coupled receptors, the CRF receptors type 1 (CRF1 receptor) and type 2 (CRF2 receptor). In a previous study, we reported that CRF, an endogenous ligand for CRF1 receptor, modulated Ca2+ influx in rat pancreatic beta-cells. In addition to CRF, other additional members of the family, urocortins, have been identified in mammals. Urocortin 1 (UCN 1), a peptide of the CRF family, binds both CRF1 receptor and CRF2 receptor with equal affinities. Urocortin 3 (UCN 3), a highly selective ligand for CRF2 receptor with little affinity for CRF1 receptor, has been shown in rat pancreatic beta-cells. The present study focused on the effects of the CRF family peptides on intracellular Ca2+ ([Ca2+]i) concentration via CRF receptors in rat pancreatic beta-cells. Microfluorimetric experiments showed that CRF (0.2 nM) and UCN 1 (0.2 nM) elevated [Ca2+]i levels. Both CRF and UCN 1 effects were attenuated by astressin, a non-selective CRF receptor antagonist. Antisauvagine-30, a selective CRF2 receptor antagonist, appeared to enhance the UCN 1 effect on the elevation of [Ca2+]i. The CRF effect on the elevation of [Ca2+]i was inhibited by the addition of UCN 3. Taken together, the activation of CRF2 receptor antagonizes the CRF1 receptor-stimulated Ca2+ influx. 相似文献
13.
Klose J Fechner K Beyermann M Krause E Wendt N Bienert M Rudolph R Rothemund S 《Biochemistry》2005,44(5):1614-1623
The large extracellular N-terminal domains (NTs) of class B G protein-coupled receptors serve as major ligand binding sites. However, little is known about the ligand requirements for interactions with these receptor domains. Recently, we have shown that the most potent CRF receptor agonist urocortin 1 (Ucn1) has two segregated receptor binding sites Ucn1(1-21) and Ucn1(32-40). For locating the receptor domains interacting with these two sites, we have investigated the binding of appropriate Ucn1 analogues to the receptor N-termini compared to the corresponding full-length receptors. For this purpose receptor NTs of CRF(rat) subtypes 1 and 2(alpha) without their signal sequences were overexpressed in Escherichia coli and folded in vitro. For CRF2(a)-rNT, which bears five cysteine residues (C2-C6), the disulfide arrangement C2-C5 and C4-C6 was found, leaving C3 free. This is consistent with the disulfide pattern of CRF1-rNT, which has six cysteines and in which C1 is paired with C3. Binding studies of N-terminally truncated or C-terminally modified Ucn1 analogues demonstrate that it is the C-terminal part, Ucn1(11-40), that binds to receptor NT, indicating a two-domain binding mechanism for Ucn binding to receptor NT. Since the binding of Ucn1 to the juxtamembrane domain has been shown to be segregated from binding to the receptor N-terminus [Hoare et al. (2004) Biochemistry 43, 3996-4011], a third binding domain should exist, probably comprising residues 8-10 of Ucn, which particularly contribute to a high-affinity binding to full-length receptors but not to receptor NT. 相似文献
14.
Corticotropin-releasing factor-containing cells have been recently found in the endocrine pancreas of several vertebrate species by immunocytochemistry. In order to clarify the possible physiological significance of these findings, we have studied the effect of the administration of CRF on endocrine pancreatic function. Five minutes, after injection of ovine CRF 1-41 into the jugular vein, a dose-related increase in insulin levels in the hepatic-portal vein of anesthetized rats was found. This dose-dependent insulin increase was delayed to fifteen minutes after CRF injection into rats exposed to greater surgical stress and was partially blunted in adrenalectomized animals. Glucose and glucagon levels were not altered after CRF administration under these conditions. These results suggest that CRF may play a modulatory role in insulin secretion; however, whether CRF acts directly on the beta-cell or through some CRF-stimulated mediator remains to be established. 相似文献
15.
Chronic ethanol exposure potentiates the locomotor-activating effects of corticotropin-releasing factor (CRF) in rats 总被引:1,自引:0,他引:1
The effects of chronic exposure (21 days) to ethanol vapors on locomotor response to intracerebroventricular (i.c.v.) administration of corticotropin releasing factor (CRF) was investigated in male Wistar rats. Responses to CRF were tested during chronic exposure, 1 1/2 hours following removal of ethanol vapors, and two weeks after withdrawal of ethanol. A greater sensitivity to the locomotor-activating effects of CRF was found in ethanol-treated rats as compared to their controls during ethanol exposure (P less than 0.001) and 90 min following removal of ethanol vapors (P less than 0.001) but not two weeks following withdrawal. These results support clinical findings of a reversible activation in the hypothalamic-pituitary-adrenal (HPA) axis in alcoholism. In addition, it appears that chronic exposure to ethanol can also modify central neuronal systems specifically responsive to the locomotor activating effects of CRF. 相似文献
16.
István Lengvári M.D. Zsolt Liposits Sándor Vigh Andrew V. Schally Béla Flerkó 《Cell and tissue research》1985,240(2):467-471
Summary A fine network of corticotropin-releasing factor (CRF)-immunopositive fibers was found in the posterior lobe of the pituitary of the rat. The intermediate and distal lobes were free of CRF-immunoreactivity. Varicose, terminal-like axons were frequently observed around capillary vessels. Surgical isolation of the paraventricular nuclei resulted in a complete disappearance of CRF-immunoreactive fibers from the posterior lobe. CRF-immunopositive fibers show the general characteristics of peptidergic axons. These ultrastructural observations support the idea that CRF is secreted into capillary vessels. 相似文献
17.
Rita Józsa M.D. Sándor Vigh Béla Mess Andrew V. Schally 《Cell and tissue research》1986,244(3):681-685
Summary In chicken embryos of different ages and in young chickens after hatching, neural elements reacting with antibodies generated against synthetic ovine corticotropin-releasing factor (CRF) were studied by means of the peroxidase-anti-peroxidase (PAP) technique at the lightmicroscopic level. CRF-immunoreactivity was first observed in perikarya located in the periventricular part of the hypothalamus on the 14th day of the incubation period. CRF-containing neural elements were detected on the same day of incubation in the external zone of the median eminence, but not in all investigated animals. In extrahypothalamic sites, immunoreactive perikarya were demonstrable in the central gray of the mesencephalon on the 15th day of incubation. Furthermore, immunoreactive cells appeared in other brain regions such as nucleus accumbens and dorsomedial nucleus of the thalamus after hatching. The present observations provide information regarding the functional development of the hypothalamo-hypophyseal-adrenal axis in the chick embryo. 相似文献
18.
The ligand binding subunits of the corticotropin-releasing factor (CRF) receptors in brain and anterior pituitary of a number of species have been identified by chemical affinity cross-linking using the homobifunctional cross-linking agent disuccinimidyl suberate and 125I-Tyr0-oCRF (ovine CRF). In homogenates of rat, monkey, and human cerebral cortex, 125I-Tyr0-oCRF was covalently incorporated into a protein of Mr = 58,000. Under identical conditions in the anterior pituitary of rat, monkey, cow, and pig, 125I-Tyr0-oCRF was incorporated into a protein of apparent Mr = 75,000. The specificity of the labeling was typical of the CRF binding site since both the cerebral cortex- and pituitary-labeled proteins exhibited the appropriate pharmacological rank order profile characteristic of the CRF receptor (Nle21,Tyr32-oCRF approximately equal to rat/human CRF approximately equal to ovine CRF approximately equal to alpha-helical CRF(6-41) greater than alpha-helical oCRF(9-41) greater than or equal to oCRF(7-41) greater than rat/human CRF(1-20) approximately equal to vasoactive intestinal peptide). In addition to the major labeled proteins, 125I-Tyr0-oCRF was incorporated into higher molecular weight peptides which may represent precursors and into lower molecular weight components which may represent fragments of the major labeled proteins or altered forms of the CRF binding subunit. In summary, these data indicate a heterogeneity between brain and pituitary CRF receptors with the ligand binding subunit of the brain CRF receptor residing on a Mr = 58,000 protein, while in the anterior pituitary, the identical binding subunit resides on a protein of apparent Mr = 75,000. 相似文献
19.
Functional corticotropin-releasing factor (CRF) receptors in mouse spleen: evidence from adenylate cyclase studies 总被引:1,自引:0,他引:1
Radioligand binding studies have previously identified a high affinity, magnesium-dependent, guanine nucleotide-sensitive binding site for corticotropin-releasing factor (CRF) in mouse spleen. In order to determine the functional nature of these CRF binding sites, we examined the effects of CRF on adenylate cyclase activity in mouse spleen homogenates. The stimulation of adenylate cyclase activity was dependent on time, tissue protein concentration, and guanine nucleotides. CRF-stimulated adenylate cyclase activity was evident in the presence of guanosine-5'-triphosphate (GTP) and its precursor guanosine-5'-diphosphate (GDP) but was not detected in the presence of the hydrolysis-resistant GTP analogs, guanyl-5'-imidodiphosphate [Gpp(NH)p] and guanosine-5'-gamma-thiotriphosphate (GTP-gamma-S). The rank order of potency for CRF analogs and fragments in stimulating adenylate cyclase activity was comparable to their affinities for CRF binding sites in mouse spleen homogenates. The putative receptor antagonist, alpha helical ovine CRF(9-41), did not stimulate adenylate cyclase activity but did attenuate the stimulation by various concentrations of rat/human CRF. In summary, these data demonstrate the functional nature of CRF receptors in mouse spleen as evidenced by CRF stimulation of cAMP production and suggest that this peptide may play a physiological role in regulating immune function. 相似文献
20.