首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic VLDL and glucose production is enhanced in type 2 diabetes and associated with hepatic steatosis. Whether the derangements in hepatic metabolism are attributable to steatosis or to the increased availability of FA metabolites is not known. We used methyl palmoxirate (MP), an inhibitor of carnitine palmitoyl transferase I, to acutely inhibit hepatic FA oxidation and investigated whether the FAs were rerouted into VLDL secretion and whether this would affect hepatic glucose production. After an overnight fast, male APOE3*Leiden transgenic mice received an oral dose of 10 mg/kg MP. Administration of MP led to an 83% reduction in plasma beta-hydroxybutyrate (ketone body) levels compared with vehicle-treated mice (0.47 +/- 0.07 vs. 2.81 +/- 0.16 mmol/l, respectively; P < 0.01), indicative of impaired ketogenesis. Plasma FFA levels were increased by 32% and cholesterol and insulin levels were decreased by 17% and 50%, respectively, in MP-treated mice compared with controls. MP treatment led to a 30% increase in liver triglyceride (TG) content. Surprisingly, no effect on hepatic VLDL-TG production was observed between the groups at 8 h after MP administration. In addition, the capacity of insulin to suppress endogenous glucose production was unaffected in MP-treated mice compared with controls. In conclusion, acute inhibition of FA oxidation increases hepatic lipid content but does not stimulate hepatic VLDL secretion or reduce insulin sensitivity.  相似文献   

2.
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity.  相似文献   

3.
4.
Linagliptin (TRADJENTA?) is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor. DPP-4 inhibition attenuates insulin resistance and improves peripheral glucose utilization in humans. However, the effects of chronic DPP-4 inhibition on insulin sensitivity are not known. The effects of long-term treatment (3-4 weeks) with 3 mg/kg/day or 30 mg/kg/day linagliptin on insulin sensitivity and liver fat content were determined in diet-induced obese C57BL/6 mice. Chow-fed animals served as controls. DPP-4 activity was significantly inhibited (67-89%) by linagliptin (P<0.001). Following an oral glucose tolerance test, blood glucose concentrations (measured as area under the curve) were significantly suppressed after treatment with 3 mg/kg/day (-16.5% to -20.3%; P<0.01) or 30 mg/kg/day (-14.5% to -26.4%; P<0.05) linagliptin (both P<0.01). Liver fat content was significantly reduced by linagliptin in a dose-dependent manner (both doses P<0.001). Diet-induced obese mice treated for 4 weeks with 3 mg/kg/day or 30 mg/kg/day linagliptin had significantly improved glycated hemoglobin compared with vehicle (both P<0.001). Significant dose-dependent improvements in glucose disposal rates were observed during the steady state of the euglycemic-hyperinsulinemic clamp: 27.3 mg/kg/minute and 32.2 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 20.9 mg/kg/minute with vehicle (P<0.001). Hepatic glucose production was significantly suppressed during the clamp: 4.7 mg/kg/minute and 2.1 mg/kg/minute in the 3 mg/kg/day and 30 mg/kg/day linagliptin groups, respectively; compared with 12.5 mg/kg/minute with vehicle (P<0.001). In addition, 30 mg/kg/day linagliptin treatment resulted in a significantly reduced number of macrophages infiltrating adipose tissue (P<0.05). Linagliptin treatment also decreased liver expression of PTP1B, SOCS3, SREBP1c, SCD-1 and FAS (P<0.05). Other tissues like muscle, heart and kidney were not significantly affected by the insulin sensitizing effect of linagliptin. Long-term linagliptin treatment reduced liver fat content in animals with diet-induced hepatic steatosis and insulin resistance, and may account for improved insulin sensitivity.  相似文献   

5.
6.
Obese obob mice with strong overexpression of the human apolipoprotein C1 (APOC1) exhibit excessive free fatty acid (FFA) and triglyceride (TG) levels and severely reduced body weight (due to the absence of subcutaneous adipose tissue) and skin abnormalities. To evaluate the effects of APOC1 overexpression on hepatic and peripheral insulin sensitivity in a less-extreme model, we generated obob mice with mild overexpression of APOC1 (obob/APOC1(+/-)) and performed hyperinsulinemic clamp analysis. Compared with obob littermates, obob/APOC1(+/-) mice showed reduced body weight (-25%) and increased plasma levels of TG (+632%), total cholesterol (+134%), FFA (+65%), glucose (+73%), and insulin (+49%). Hyperinsulinemic clamp analysis revealed severe whole-body and hepatic insulin resistance in obob/APOC1(+/-) mice and, in addition, increased hepatic uptake of FFA and hepatic TG content. Treatment of obob/APOC1(+/-) mice with rosiglitazone strongly improved whole-body insulin sensitivity as well as hepatic insulin sensitivity, despite a further increase of hepatic fatty acid (FA) uptake and a panlobular increase of hepatic TG accumulation. We conclude that overexpression of APOC1 prevents rosiglitazone-induced peripheral FA uptake leading to severe hepatic steatosis. Interestingly, despite rosiglitazone-induced hepatic steatosis, hepatic insulin sensitivity improves dramatically. We hypothesize that the different hepatic fat accumulation and/or decrease in FA intermediates has a major effect on the insulin sensitivity of the liver.  相似文献   

7.
Dysfunctional cross talk between adipose tissue and liver tissue results in metabolic and inflammatory disorders. As an insulin sensitizer, rosiglitazone (Rosi) improves insulin resistance yet causes increased adipose mass and weight gain in mice and humans. Conjugated linoleic acid (CLA) reduces adipose mass and body weight gain but induces hepatic steatosis in mice. We examined the combined effects of Rosi and CLA on adiposity, insulin sensitivity, and hepatic steatosis in high-fat-fed male C57Bl/6 mice. CLA alone suppressed weight gain and adipose mass but caused hepatic steatosis. Addition of Rosi attenuated CLA-induced insulin resistance and dysregulation of adipocytokines. In adipose, CLA significantly suppressed lipoprotein lipase and fatty acid translocase (FAT/CD36) mRNA, suggesting inhibition of fatty acid uptake into adipose; addition of Rosi completely rescued this effect. In addition, CLA alone increased markers of macrophage infiltration, F4/80, and CD68 mRNA levels, without inducing TNF-alpha in epididymal adipose tissue. The ratio of Bax to Bcl2, a marker of apoptosis, was significantly increased in adipose of the CLA-alone group and was partially prevented by treatment of Rosi. Immunohistochemistry of F4/80 demonstrates a proinflammatory response induced by CLA in epididymal adipose. In the liver, CLA alone induced microsteatotic liver but surprisingly increased the rate of very-low-density lipoprotein-triglyceride production without inducing inflammatory mediator-TNF-alpha and markers of macrophage infiltration. These changes were accompanied by significantly increased mRNA levels of stearoyl-CoA desaturase, FAT/CD36, and fatty acid synthase. The combined administration of CLA and Rosi reduced hepatic liver triglyceride content as well as lipogenic gene expression compared with CLA alone. In summary, dietary CLA prevented weight gain in Rosi-treated mice without attenuating the beneficial effects of Rosi on insulin sensitivity. Rosi ameliorated CLA-induced lipodystrophic disorders that occurred in parallel with rescued expression of adipocytokine and adipocytes-abundant genes.  相似文献   

8.
Men and women with hyperandrogenemia have a more proatherogenic plasma lipid profile [e.g., greater triglyceride (TG) and total and low-density lipoprotein-cholesterol and lower high-density lipoprotein-cholesterol concentrations] than healthy premenopausal women. Furthermore, castration of male rats markedly reduces testosterone availability below normal and decreases plasma TG concentration, and testosterone replacement reverses this effect. Testosterone is, therefore, thought to be an important regulator of plasma lipid homeostasis. However, little is known about the effect of testosterone on plasma TG concentration and kinetics. Furthermore, testosterone is a potent skeletal muscle protein anabolic agent in men, but its effect on muscle protein turnover in women is unknown. We measured plasma lipid concentrations, hepatic very low density lipoprotein (VLDL)-TG and VLDL-apolipoprotein B-100 secretion rates, and the muscle protein fractional synthesis rate in 10 obese women before and after trandermal testosterone (1.25 g of 1% AndroGel daily) treatment for 3 wk. Serum total and free testosterone concentrations increased (P < 0.05) by approximately sevenfold in response to testosterone treatment, reaching concentrations that are comparable to those in women with hyperandrogenemia, but lower than the normal range for eugonadal men. Except for a small (~10%) decrease in plasma high-density lipoprotein particle and cholesterol concentrations (P < 0.04), testosterone therapy had no effect on plasma lipid concentrations, lipoprotein particle sizes, and hepatic VLDL-TG and VLDL-apolipoprotein B-100 secretion rates (all P > 0.05); the muscle protein fractional synthesis rate, however, increased by ~45% (P < 0.001). We conclude that testosterone is a potent skeletal muscle protein anabolic agent, but not an important regulator of plasma lipid homeostasis in obese women.  相似文献   

9.
Hepatic steatosis, the accumulation of lipids in the liver, is widely believed to result in insulin resistance. To test the causal relationship between hepatic steatosis and insulin resistance, we generated mice that overexpress acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step of triacylglycerol (TG) biosynthesis, in the liver (Liv-DGAT2 mice). Liv-DGAT2 mice developed hepatic steatosis, with increased amounts of TG, diacylglycerol, ceramides, and unsaturated long-chain fatty acyl-CoAs in the liver. However, they had no abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, rates of glucose infusion and hepatic glucose production during hyperinsulinemic-euglycemic clamp studies, or activities of insulin-stimulated signaling proteins in the liver. DGAT1 overexpression in the liver also failed to induce glucose or insulin intolerance. Our results indicate that DGAT-mediated lipid accumulation in the liver is insufficient to cause insulin resistance and show that hepatic steatosis can occur independently of insulin resistance.  相似文献   

10.
11.
Abnormalities in lipoprotein lipase (LPL) function contribute to the development of hypertriglyceridemia, one of the characteristic disorders observed in the metabolic syndrome. In addition to the hydrolyzing activity of triglycerides, LPL modulates various cellular functions via its binding ability to the cell surface. Here we show the effects of catalytically inactive LPL overexpression on high-fat diet (HFD)-induced decreased systemic insulin sensitivity in mice. The binding capacity of catalytically inactive G188E-LPL to C2C12 skeletal muscle cells was not significantly different from that of wild type LPL. Insulin-stimulated IRS-1 phosphorylation and glucose uptake were increased by addition of wild type or mutant LPL in C2C12 cells. After 10 weeks' of HFD feeding, mice had significantly higher blood glucose levels than chow-fed mice in insulin tolerance tests. The blood glucose levels after insulin injection was significantly decreased in mutated LPL-overexpressing mice (G188E mice), as well as in wild type LPL-overexpressing mice (WT mice). Overexpression of catalytically inactive LPL, as well as wild type LPL, improved impaired insulin sensitivity in mice. These results show that decreased expression of LPL possibly causes the insulin resistance, in addition to hypertriglyceridemia, in metabolic syndrome.  相似文献   

12.
13.
Inhaled nitric oxide (NO) is a highly selective pulmonary vasodilator. It was recently reported that inhaled NO causes peripheral vasodilatation after treatment with a NO synthase (NOS) inhibitor. These findings suggested the possibility that inhibition of endogenous NOS uncovered the systemic vasodilating effect of NO or NO adducts absorbed via the lungs during NO inhalation. To learn whether inhaled NO reduces systemic vascular resistance in the absence of endothelial NOS, we studied the systemic vascular effects of NO breathing in wild-type mice treated without and with the NOS inhibitor N(omega)-nitro-l-arginine methyl ester and in NOS3-deficient (NOS3(-/-)) mice. During general anesthesia, the cardiac output, left ventricular function, and systemic vascular resistance were not altered by NO breathing at 80 parts/million in both genotypes. Breathing NO in air did not alter blood pressure and heart rate, as measured by tail-cuff and telemetric methods, in either awake wild-type mice (whether or not they were treated with N(omega)-nitro-l-arginine methyl ester), or in awake NOS3(-/-) mice. Our findings suggest that absorption of NO or adducts during NO breathing is insufficient to cause systemic vasodilation in mice, even when endogenous endothelial NO production is congenitally absent.  相似文献   

14.
Endoplasmic reticulum (ER) is a principal organelle responsible for energy and nutrient management. Its dysfunction has been viewed in the context of obesity and related glucolipid metabolic disorders. However, therapeutic approaches to improve ER adaptation and systemic energy balance in obesity are limited. Thus, we examined whether hydroxytyrosol (HT), an important polyphenolic compound found in virgin olive oil, could correct the metabolic impairments in diet-induced obesity (DIO) mice. Here, we found that HT gavage for 10 weeks significantly ameliorated glucose homeostasis and chronic inflammation and decreased hepatic steatosis in DIO mice. At the molecular level, ER stress indicators, inflammatory and insulin signaling markers demonstrated that high-fat diet (HFD)-induced ER stress and insulin resistance (IR) in insulin sensitive tissue were corrected by HT. In vitro studies confirmed that HT supplementation (100 μM) attenuated palmitate-evoked ER stress, thus rescuing the downstream JNK/IRS pathway. As a result from suppression of ER stress in the liver, HT further decreased hepatic sterol regulatory element-binding protein-1 expression (SREBP1). Additionally, aberrant expression of genes involved in hepatic lipogenesis (SREBP1, ACC, FAS, SCD1) caused by HFD was restored by HT. These findings suggested that HT ameliorated chronic inflammation and IR and decreased hepatic steatosis in obesity by beneficial modulation of ER stress.  相似文献   

15.
While non-alcoholic fatty liver disease (NAFLD) represents the common cause of chronic liver disease, specific therapies are currently unavailable. The wine industry produces millions of tons of residue (pomace), which contains high levels of bioactive phytochemicals. The aim of this study was to clarify the potential benefits of grape pomace for the treatment of NAFLD at different levels of severity, and to clarify the mechanism of action. C57Bl/6 mice were given high fat diet (HFD) or western diet (WD) as models of obesity and hepatic steatosis or steatohepatitis, respectively, with or without pomace supplementation (50–250 mg/day). Pomace inhibited food intake, and reduced serum leptin and body weight gain. Ectopic fat deposition was reduced, while white adipose tissue mass was preserved. In addition, pomace improved glucose tolerance and insulin sensitivity, prevented the development of adipose tissue inflammation, and reduced hepatic steatosis. Higher expression of genes involved in fatty acids transport and oxidation was observed in adipose tissue, while lipogenic genes were attenuated in the liver of pomace-treated mice. In WD-fed mice, pomace reduced the severity of hepatic steatosis and inflammation and improved blood lipid profile, but was ineffective in reversing hepatic damage of advanced NASH. In conclusion, pomace improved insulin sensitivity and reduced ectopic fat deposition, leading to a healthier metabolic profile. Pomace may hold the potential as a supplement with beneficial health outcomes for the prevention and treatment of hepatic steatosis and other obesity-related pathologies.  相似文献   

16.
Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp−/−) mice and age-weight matched wild-type control mice. Young (10–12-week-old) L-Mttp−/− mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp−/− mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp−/− mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp−/− mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp−/− mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp−/− mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp−/− mice.  相似文献   

17.
Role of ChREBP in hepatic steatosis and insulin resistance   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
The ability of insulin to suppress gluconeogenesis in type II diabetes mellitus is impaired; however, the cellular mechanisms for this insulin resistance remain poorly understood. To address this question, we generated transgenic (TG) mice overexpressing the phosphoenolpyruvate carboxykinase (PEPCK) gene under control of its own promoter. TG mice had increased basal hepatic glucose production (HGP), but normal levels of plasma free fatty acids (FFAs) and whole-body glucose disposal during a hyperinsulinemic-euglycemic clamp compared with wild-type controls. The steady-state levels of PEPCK and glucose-6-phosphatase mRNAs were elevated in livers of TG mice and were resistant to down-regulation by insulin. Conversely, GLUT2 and glucokinase mRNA levels were appropriately regulated by insulin, suggesting that insulin resistance is selective to gluconeogenic gene expression. Insulin-stimulated phosphorylation of the insulin receptor, insulin receptor substrate (IRS)-1, and associated phosphatidylinositol 3-kinase were normal in TG mice, whereas IRS-2 protein and phosphorylation were down-regulated compared with control mice. These results establish that a modest (2-fold) increase in PEPCK gene expression in vivo is sufficient to increase HGP without affecting FFA concentrations. Furthermore, these results demonstrate that PEPCK overexpression results in a metabolic pattern that increases glucose-6-phosphatase mRNA and results in a selective decrease in IRS-2 protein, decreased phosphatidylinositol 3-kinase activity, and reduced ability of insulin to suppress gluconeogenic gene expression. However, acute suppression of HGP and glycolytic gene expression remained intact, suggesting that FFA and/or IRS-1 signaling, in addition to reduced IRS-2, plays an important role in downstream insulin signal transduction pathways involved in control of gluconeogenesis and progression to type II diabetes mellitus.  相似文献   

20.
In order to investigate the role of mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 (mtGPAT1) in the pathogenesis of hepatic steatosis and hepatic insulin resistance, we examined whole-body insulin action in awake mtGPAT1 knockout (mtGPAT1(-/-)) and wild-type (wt) mice after regular control diet or three weeks of high-fat feeding. In contrast to high-fat-fed wt mice, mtGPAT1(-/-) mice displayed markedly lower hepatic triacylglycerol and diacylglycerol concentrations and were protected from hepatic insulin resistance possibly due to a lower diacylglycerol-mediated PKC activation. Hepatic acyl-CoA has previously been implicated in the pathogenesis of insulin resistance. Surprisingly, compared to wt mice, mtGPAT1(-/-) mice exhibited increased hepatic insulin sensitivity despite an almost 2-fold elevation in hepatic acyl-CoA content. These data suggest that mtGPAT1 might serve as a novel target for treatment of hepatic steatosis and hepatic insulin resistance and that long chain acyl-CoA's do not mediate fat-induced hepatic insulin resistance in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号