首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis is a soil-dwelling Gram-positive bacterial species that has been extensively studied as a model of biofilm formation and stress-induced cellular differentiation. The tetrameric protein, SinR, has been identified as a master regulator for biofilm formation and linked to the regulation of the early transition states during cellular stress response, such as motility and biofilm-linked biosynthetic genes. SinR is a 111-residue protein that is active as a dimer of dimers, composed of two distinct domains, a DNA-binding helix-turn-helix N-terminus domain and a C-terminal multimerization domain. In order for biofilm formation to proceed, the antagonist, SinI, must inactivate SinR. This interaction results in a dramatic structural rearrangement of both proteins. Here we report the full-length backbone and side chain chemical shift values in addition to the experimentally derived secondary structure predictions as the first step towards directly studying the complex interaction dynamics between SinR and SinI.  相似文献   

2.
Vibrio anguillarum is a biofilm forming Gram-negative bacterium that survives prolonged periods in seawater and causes vibriosis in marine life. A quorum-sensing signal transduction pathway initiates biofilm formation in response to environmental stresses. The phosphotransferase protein VanU is the focal point of the quorum-sensing pathway and facilitates the regulation between independent phosphorelay systems that activate or repress biofilm formation. Here we report the 1H, 13C, and 15N backbone and side chain resonance assignments and secondary structure prediction for VanU from V. anguillarum.  相似文献   

3.
The C-terminal Eps15 homology (EH) domain 3 (EHD3) belongs to a eukaryotic family of endocytic regulatory proteins and is involved in the recycling of various receptors from the early endosome to the endocytic recycling compartment or in retrograde transport from the endosomes to the Golgi. EH domains are highly conserved in the EHD family and function as protein-protein interaction units that bind to Asn-Pro-Phe (NPF) motif-containing proteins. The EH domain of EHD1 was the first C-terminal EH domain from the EHD family to be solved by NMR. The differences observed between this domain and proteins with N-terminal EH domains helped describe a mechanism for the differential binding of NPF-containing proteins. Here, structural studies were expanded to include the EHD3 EH domain. While the EHD1 and EHD3 EH domains are highly homologous, they have different protein partners. A comparison of these structures will help determine the selectivity in protein binding between the EHD family members and lead to a better understanding of their unique roles in endocytic regulation.  相似文献   

4.
Summary The growth factor receptor-bound protein-2 (Grb2) is an adaptor protein that mediates signal transduction pathways. Chemical shift assignments were obtained for the SH2 domain of Grb2 by heteronuclear NMR spectroscopy, employing the uniformly 13C-/15N-enriched protein as well as the protein containing selectively 15N-enriched amino acids. Using the Chemical Shift Index (CSI) method, the chemical shift indices of four nuclei, 1H, 13C, 13C and 13CO, were used to derive the secondary structure of the protein. Nuclear Overhauser enhancements (NOEs) were then employed to confirm the secondary structure. The CSI results were compared to the secondary structural elements predicted for the Grb2 SH2 domain from a sequence alignment [Lee et al. (1994) Structure, 2, 423–438]. The core structure of the SH2 domain contains an antiparallel -sheet and two -helices. In general, the secondary structural elements determined from the CSI method agree well with those predicted from the sequence alignment.Abbreviations crk viral p47gag-crk - EGF epidermal growth factor - GAP GTPase-activating protein - PI3K phosphatidylinositol-3-kinase - PLC- phospholipase-C-, shc, src homologous and collagen - src sarcoma family of nonreceptor tyrosine kinase  相似文献   

5.
p-Hydroxyphenylacetate (HPA) 3-hydroxylase from Acinetobacter baumannii consists of a reductase component (C(1)) and an oxygenase component (C(2)). C(1) catalyzes the reduction of FMN by NADH to provide FMNH(-) as a substrate for C(2). The rate of reduction of flavin is enhanced ~20-fold by binding HPA. The N-terminal domain of C(1) is homologous to other flavin reductases, whereas the C-terminal domain (residues 192-315) is similar to MarR, a repressor protein involved in bacterial antibiotic resistance. In this study, three forms of truncated C(1) variants and single site mutation variants of residues Arg-21, Phe-216, Arg-217, Ile-246, and Arg-247 were constructed to investigate the role of the C-terminal domain in regulating C(1). In the absence of HPA, the C(1) variant in which residues 179-315 were removed (t178C(1)) was reduced by NADH and released FMNH(-) at the same rates as wild-type enzyme carries out these functions in the presence of HPA. In contrast, variants with residues 231-315 removed behaved similarly to the wild-type enzyme. Thus, residues 179-230 are involved in repressing the production of FMNH(-) in the absence of HPA. These results are consistent with the C-terminal domain in the wild-type enzyme being an autoinhibitory domain that upon binding the effector HPA undergoes conformational changes to allow faster flavin reduction and release. Most of the single site variants investigated had catalytic properties similar to those of the wild-type enzyme except for the F216A variant, which had a rate of reduction that was not stimulated by HPA. F216A could be involved with HPA binding or in the required conformational change for stimulation of flavin reduction by HPA.  相似文献   

6.
L Jermutus  V Guez  H Bedouelle 《Biochimie》1999,81(3):235-244
The C-terminal domain (residues 320-419) of tyrosyl-tRNA synthetase (TyrRS) from Bacillus stearothermophilus is disordered in the crystal structure and involved in the binding of the anticodon arm of tRNA(Tyr). The sequences of 11 TyrRSs of prokaryotic or mitochondrial origins were aligned and the alignment showed the existence of conserved residues in the sequences of the C-terminal domains. A consensus could be deduced from the application of five programs of secondary structure prediction to the 11 sequences of the query set. These results suggested that the sequences of the C-terminal domains determined a precise and conserved secondary structure. They predicted that the C-terminal domain would have a mixed fold (alpha/beta or alpha+beta), with the alpha-helices in the first half of the sequence and the beta-strands mainly in its second half. Several programs of fold recognition from sequence alone, by threading onto known structures, were applied but none of them identified a type of fold that would be common to the different sequences of the query set. Therefore, the fold of the C-terminal, anticodon binding domain might be novel.  相似文献   

7.
Connexin37 (Cx37) is a gap junction protein involved in cell-to-cell communication in the vasculature and other tissues. Cx37 suppresses proliferation of vascular cells involved in tissue development and repair in vivo, as well as tumor cells. Global deletion of Cx37 in mice leads to enhanced vasculogenesis in development, as well as collateralgenesis and angiogenesis in response to injury, which together support improved tissue remodeling and recovery following ischemic injury. Here we report the 1H, 15N, and 13C resonance assignments for an important regulatory domain of Cx37, the carboxyl terminus (CT; C233-V333). The predicted secondary structure of the Cx37CT domain based on the chemical shifts is that of an intrinsically disordered protein. In the 1H–15N HSQC, N-terminal residues S254-Y259 displayed a second weaker peak and residues E261-Y266 had significant line broadening. These residues are flanked by prolines (P250, P258, P260, and P268), suggesting proline cis–trans isomerization. Overall, these assignments will be useful for identifying the binding sites for intra- and inter-molecular interactions that affect Cx37 channel activity.  相似文献   

8.
Acinetobacter baumannii is an alarming nosocomial pathogen that is resistant to multiple drugs. The pathogen is forefront of scientific attention because of high mortality and morbidity found for its complications in the past decade. As a consequence, identification of novel drug candidates and subsequent designing of novel chemical scaffolds is an imperative need of time. In the present study, we used a recently reported structure of BfmR enzyme and performed structure based virtual screening, MD simulation and binding free energies calculations. MD simulation revealed a profound movement of the best-characterized inhibitor towards the α4-β5-α5 face of the enzyme receiver domain, thus indicating its high affinity for this site compared to phosphorylation. Furthermore, it was observed that the enzyme and enzyme-inhibitor complex have high structure stability with mean RMSD of 1.2 and 1.1 Å, respectively. Binding free energy calculations for the complex unraveled high stability with MMGBSA score of ?26.21?kcal/mol and MMPBSA score of ?1.47?kcal/mol. Van der Waal energy was found highly favorable with value of ?30.25?kcal/mol and dominated significantly the overall binding energy. Furthermore, a novel WaterSwap assay was used to circumvent the limitations of MMGB/PBSA that complements the inhibitor affinity for enzyme active pocket as depicted by the low convergence of Bennett, TI and FEP algorithms. Results yielded from this study will not only give insight into the phenomena of inhibitor movement towards the enzyme receiver domain, but will also provide a useful baseline for designing derivatives with improved biological and pharmacokinetics profiles.

Communicated by Ramaswamy H. Sarma  相似文献   


9.
Yeast Fpr4p belongs to the FK506-binding protein (FKBP) class of peptidyl proline isomerases (PPIases), and has been implicated in regulating the cis-trans conversion of proline residues within histone tails. Here we report the (1)H, (13)C and (15)N chemical shift assignments for the bacterially expressed C-terminal PPIase catalytic domain of Fpr4p. Prediction of secondary structure reveals similarity to domains from other members of the FKBP proline isomerases, including yeast Fpr1p and the prototypic PPIase region from human FKBP12.  相似文献   

10.
The giant sarcomeric protein obscurin (~720 kDa) is an essential contributor to myofibrillogenesis and acts as the only known tether between the contractile apparatus and the surrounding membrane structures in myofibrils. Genomic characterization of OBSCN suggests a modular architecture, consisting of dozens of individually-folded Ig-like and FnIII-like domains arranged in tandem. Here we describe the sequence-specific chemical shift assignments of the second putative obscurin Ig-like domain (Ig2). This domain specifically binds to MyBP-C slow variant-1 through an unknown mechanism. Ultimately, the assignments presented here will facilitate high-resolution structure determination of Ig2 and provide insight into the specificity of the obscurin-MyBP-C interaction.  相似文献   

11.
A domain needed for the catalytic efficiency of an enzyme model of simple processivity and domain–domain interactions has been characterized by NMR. This domain 4 from phosphomannomutase/phosphoglucomutase (PMM/PGM) closes upon glucose phosphate and mannose phosphate ligands in the active site, and can modestly reconstitute activity of enzyme truncated to domains 1–3. This enzyme supports biosynthesis of the saccharide-derived virulence factors (rhamnolipids, lipopolysaccharides, and alginate) of the opportunistic bacterial pathogen Pseudomonas aeruginosa. 1H, 13C, and 15N NMR chemical shift assignments of domain 4 of PMM/PGM suggest preservation and independence of its structure when separated from domains 1–3. The face of domain 4 that packs with domain 3 is perturbed in NMR spectra without disrupting this fold. The perturbed residues overlap both the most highly coevolved positions in the interface and residues lining a cavity at the domain interface.  相似文献   

12.
ATP-binding cassette (ABC) systems belong to a large superfamily of proteins that couple the energy released from ATP hydrolysis to a wide variety of cellular processes, including not only transport of various molecules, but also gene regulation, and DNA repair. Mutations in the bacterial uup gene, which encodes a cytosolic ABC ATPase, lead to an increase in the frequency of precise excision of transposons Tn10 and Tn5, suggesting a role of the Uup protein in DNA metabolism. Uup is a 72?kDa polypeptide which comprises two ABC domains, separated by a 75-residue linker, and a C-terminal domain (CTD) of unknown function. The Uup protein from Escherichia coli has been shown to bind DNA in vitro, and the CTD domain contributes to the DNA-binding affinity. We have produced and purified uniformly labeled 15N- and 15N/13C Uup CTD domain (region 528?C635), and assigned backbone and side-chains resonances using heteronuclear NMR spectroscopy. Secondary structure evaluation based on backbone chemical shifts is consistent with the presence of three ??-helices, including two long ones (residues 564?C590 and 601?C632), suggesting that Uup CTD may fold as an intramolecular coiled coil motif. This work provides the starting point towards determining the first atomic structure of a non-ATPase domain within the vast REG subfamily of ABC soluble ATPases.  相似文献   

13.
A new method has been used to predict probability profiles for helix, beta-sheet and bend structures along the entire sequence and derive an averaged profile for the three homologous domains. The results are correlated with the disulphide bridge pattern, the distribution of hydrophobic sites and points where albumin is cleaved by enzymes.  相似文献   

14.
X Li  R A Smith  C M Dobson 《Biochemistry》1992,31(40):9562-9571
The sequence-specific 1H NMR assignments of the 89-residue recombinant kringle domain from human urokinase are presented. These were achieved primarily by utilizing TOCSY and NOESY spectra in conjunction with COSY spectra recorded at 500 MHz and 600 MHz. Regular secondary structure elements have been derived from a qualitative interpretation of nuclear Overhauser enhancement, JNH alpha coupling constant, and amide proton exchange data. Two helices have been identified. One helix, involving Ser40-Gly46, corresponds to that reported for t-PA kringle 2 (Byeon et al., 1991), but does not exist in other kringles with known structures. The second helix, in the region Asn26-Gln33, is thus far unique to the urokinase kringle. Three antiparallel beta-sheets and three tight turns have also been identified, which correspond exactly to those identified in t-PA kringle 2 both in solution and in the crystalline state (de Vos et al., 1992). Despite the very different ligand binding properties of the urokinase kringle, NOE data indicate that the tertiary fold of the molecule conforms closely to that found for other kringles.  相似文献   

15.
The Bas-Congo virus (BASV) is the first rhabdovirus associated with a human outbreak of acute hemorrhagic fever. The single-stranded, negative-sense RNA genome of BASV contains the five core genes present in all rhabdoviral genomes plus an additional three genes, annotated U1, U2, and U3, with weak (<21%) sequence similarity only to a handful of genes observed in a few other rhabdoviral genomes. The function of the rhabdoviral U proteins is unknown, but, they are hypothesized to play a role in viral infection or replication. To better understand this unique family of proteins, a construct containing residues 27–203 of the 216-residue U1 protein (BASV-U1*) was prepared. By collecting data in 0.5 M urea it was possible to eliminate transient association enough to enable the assignment of most of the observable 1HN, 1Hα, 15N, 13Cα, 13Cβ, and 13C´ chemical shifts for BASV-U1* that will provide a foundation to study its solution properties. The analyses of these chemical shifts along with 15N-edited NOESY data enabled the identification of the elements of secondary structure present in BASV-U1*.  相似文献   

16.
Cystatins are cysteine proteases inhibitors that are widely distributed among insects, mammalians and plants. Here we report the complete resonance assignment of canecystatin-1 from Saccharum officinarum obtained by heteronuclear multidimensional high-resolution nuclear magnetic resonance spectroscopy. The consensus chemical shift index was calculated and showed the presence of one α-helix (residues 27–43) and three β-strands (residues 48–74, 78–89 and 94–104), a secondary structure pattern that suggests a domain-swapped structure as presented by stefin B and human cystatin C, opposed to the monomeric structure yet found in other phytocystatins like oryza and pineapple cystatin.  相似文献   

17.
Connexin45 (Cx45) is a gap junction protein involved in cell-to-cell communication in the heart and other tissues. Here we report the 1H, 15N, and 13C resonance assignments for the monomer and dimer conformations of the Cx45 carboxyl terminal (Cx45CT) domain and provide evidence of dimerization using diffusion ordered spectroscopy. The predicted secondary structure of the Cx45CT domain based on the chemical shifts identified one region of α-helical structure, which corresponds to the residues that broadened beyond detection in the dimer confirmation. Previous biophysical studies from our laboratory characterizing the CT domain from the other major cardiac connexins, Cx40 and Cx43, suggest that the amount of α-helical content may translate into the ability of a protein to dimerize. Even though the CT domain is thought to be the main regulatory domain of most connexins, the physiological role of CT dimerization is currently unknown. Therefore, these assignments will be useful for determining the intermolecular interactions that mediate Cx45CT dimerization, information that will be used to characterize dimerization in functional channels, as well as characterizing the binding sites for molecular partners involved in Cx45 regulation.  相似文献   

18.
The 55 residue C-terminal domain of UvrB that interacts with UvrC during excision repair in Escherichia coli has been expressed and purified as a (His)6 fusion construct. The fragment forms a stable folded domain in solution. Heteronuclear NMR experiments were used to obtain extensive 15N, 13C and 1H NMR assignments. NOESY and chemical shift data showed that the protein comprises two helices from residues 630 to 648 and from 652 to 670. 15N relaxation data also show that the first 11 and last three residues are unstructured. The effective rotational correlation time within the structured region is not consistent with a monomer. This oligomerisation may be relevant to the mode of dimerisation of UvrB with the homologous domain of UvrC.  相似文献   

19.
Protein G is a member of a class of cell surface bacterial proteins from Streptococcus that bind IgG with high affinity. A fragment of molecular mass 6988, which retains IgG-binding activity, has been generated by proteolytic digestion and analyzed by 1H NMR. Two-dimensional DQF-COSY, TOCSY, and NOESY spectra have been employed to assign the 1H NMR spectrum of the peptide. Elements of regular secondary structure have been identified by using nuclear Overhauser enhancement, coupling constant, and amide proton exchange data. The secondary structure consists of a central alpha-helix (Ala28-Val44), flanked by two portions of beta-sheet (Val5-Val26 and Asp45-Lys62). This is a fundamentally different arrangement of secondary structure from that of protein A, which is made up of three consecutive alpha-helices in free solution (Torigoe et al., 1990). We conclude that the molecular mechanisms underlying the association of protein A and protein G with IgG are different.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号