首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical shift assignments and secondary structure prediction of the master biofilm regulator,SinR, from Bacillus subtilis
Authors:Sean D. Stowe  Andrew L. Olson  Richard Losick  John Cavanagh
Affiliation:1. Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695-7622, USA
2. Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
Abstract:Bacillus subtilis is a soil-dwelling Gram-positive bacterial species that has been extensively studied as a model of biofilm formation and stress-induced cellular differentiation. The tetrameric protein, SinR, has been identified as a master regulator for biofilm formation and linked to the regulation of the early transition states during cellular stress response, such as motility and biofilm-linked biosynthetic genes. SinR is a 111-residue protein that is active as a dimer of dimers, composed of two distinct domains, a DNA-binding helix-turn-helix N-terminus domain and a C-terminal multimerization domain. In order for biofilm formation to proceed, the antagonist, SinI, must inactivate SinR. This interaction results in a dramatic structural rearrangement of both proteins. Here we report the full-length backbone and side chain chemical shift values in addition to the experimentally derived secondary structure predictions as the first step towards directly studying the complex interaction dynamics between SinR and SinI.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号