首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The Stereotaxic administration of 1-methyl-4-phenylpyridinium ion (MPP+) into the neostriatum of male rats caused a lesion that resulted in a large dose-dependent loss of striatal fructose 2,6-bisphosphate; initial values were restored 5 days after the treatment. This effect was not protected by systemic administration of MK-801 or by nitroarginine. The content of hexose 6-phosphates and ATP was also reduced by MPP+ treatment, whereas lactate was increased. Biochemical and histological results suggested that MPP+ caused a nonselective cell death, followed by a pronounced astroglial response, parallel to fructose 2, 6-bisphosphate recovery. The Stereotaxic administration of rotenone showed a different time effect on fructose 2,6-bisphosphate cerebral content, with a significantly faster recovery. These results indicate that cerebral fructose 2,6-bisphosphate may be a sensitive metabolite related to brain damage caused by potent neurotoxins such as MPP+. On the other hand, they show that MPP+ acts in the brain through a quick, strong cytotoxic mechanism, which probably involves mechanisms other than mitochondria! chain blockage  相似文献   

2.
Changes in the content of fructose-2,6-bisphosphate, a modulator of glycolytic flux, also affect other metabolic fluxes such as the non-oxidative pentose phosphate pathway. Since this is the main source of precursors for biosynthesis in proliferating cells, PFK-2/FBPase-2 has been proposed as a potential target for neoplastic treatments. Here we provide evidence that cells with a low content of fructose-2,6-bisphosphate have a lower energy status than controls, but they are also less sensitive to oxidative stress. This feature is related to the activation of the oxidative branch of the pentose phosphate pathway and the increased production of NADPH.  相似文献   

3.
Fructose 2,6-bisphosphate (fru-2,6-P2) is a signalling metabolite that regulates photosynthetic carbon partitioning in plants. The content of fru-2,6-P2 in Arabidopsis leaves varied in response to photosynthetic activity with an abrupt decrease at the start of the photoperiod, gradual increase through the day, and modest decrease at the start of the dark period. In Arabidopsis suspension cells, fru-2,6-P2 content increased in response to an unknown signal upon transfer to fresh culture medium. This increase was blocked by either 2-deoxyglucose or the protein phosphatase inhibitor, calyculin A, and the effects of calyculin A were counteracted by the general protein kinase inhibitor K252a. The changes in fru-2,6-P2 at the start of dark period in leaves and in the cell experiments generally paralleled changes in nitrate reductase (NR) activity. NR is inhibited by protein phosphorylation and binding to 14-3-3 proteins, raising the question of whether fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase protein from Arabidopsis thaliana (AtF2KP), which both generates and hydrolyses fru-2,6-P2, is also regulated by phosphorylation and 14-3-3s. Consistent with this hypothesis, AtF2KP and NR from Arabidopsis cell extracts bound to a 14-3-3 column, and were eluted specifically by a synthetic 14-3-3-binding phosphopeptide (ARAApSAPA). 14-3-3s co-precipitated with recombinant glutathione S-transferase (GST)-AtF2KP that had been incubated with Arabidopsis cell extracts in the presence of Mg-ATP. 14-3-3s bound directly to GST-AtF2KP that had been phosphorylated on Ser220 (SLSASGpSFR) and Ser303 (RLVKSLpSASSF) by recombinant Arabidopsis calcium-dependent protein kinase isoform 3 (CPK3), or on Ser303 by rat liver mammalian AMP-activated protein kinase (AMPK; homologue of plant SNF-1 related protein kinases (SnRKs)) or an Arabidopsis cell extract. We have failed to find any direct effect of 14-3-3s on the F2KP activity in vitro to date. Nevertheless, our findings indicate the possibility that 14-3-3 binding to SnRK1-phosphorylated sites on NR and F2KP may regulate both nitrate assimilation and sucrose/starch partitioning in leaves.  相似文献   

4.
Increasing heart workload stimulates glycolysis by enhancing glucose transport and fructose-2,6-bisphosphate (Fru-2,6-P(2)), the latter resulting from 6-phosphofructo-2-kinase (PFK-2) activation. Here, we investigated whether adenosine monophosphate (AMP)-activated protein kinase (AMPK) mediates PFK-2 activation in hearts submitted to increased workload. When heart work was increased, PFK-2 activity, Fru-2,6-P(2) content and glycolysis increased, whereas the AMP:adenosine triphosphate (ATP) and phosphocreatine/creatine (PCr:Cr) ratios, and AMPK activity remained unchanged. Wortmannin, the well-known phosphatidylinositol-3-kinase inhibitor, blocked the activation of protein kinase B and the increase in glycolysis and Fru-2,6-P(2) content induced by increased work. Therefore, the control of heart glycolysis by contraction differs from that in skeletal muscle where AMPK is involved.  相似文献   

5.
6.
7.
AIMS: This study was undertaken to identify the bacterium and metabolic products contributing to a disinfectant taint in shelf-stable fruit juice and to determine some of the growth conditions for the organism. METHODS AND RESULTS: Microbiological examination of tainted and untainted fruit juice drinks detected low numbers of acid-dependent, thermotolerant, spore-forming bacteria in the tainted juices only. The presence of omega-cyclohexyl fatty acids was confirmed in two of the isolates by cell membrane fatty acid analysis. The isolates were subsequently identified as Alicyclobacillus acidoterrestris by partial 16S rDNA sequencing. Studies on the isolates showed growth at pH 2.5-6.0 and 19.5-58 degrees C. Gas chromatography/mass spectrometry (GC/MS) was used to identify and quantify 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP) in the tainted juice. Challenge studies in a mixed fruit drink inoculated with the two isolates and the type strain of A. acidoterrestris, incubated at 44-46 degrees C for 4 d, showed the production of both metabolites, which were confirmed and quantified by GC/MS. CONCLUSIONS: The results show that A. acidoterrestris can produce 2,6-DBP and 2,6-DCP in shelf-stable juices. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report detailing experimental methodology showing that A. acidoterrestris can produce 2,6-DCP in foods. Control of storage temperatures (to < 20 degrees C) immediately after processing may provide an effective control measure for the fruit juice industry to prevent spoilage by A. acidoterrestris.  相似文献   

8.
The Liver Kinase B1 (LKB1) tumor suppressor acts as a metabolic energy sensor to regulate AMP-activated protein kinase (AMPK) signaling and is commonly mutated in various cancers, including non-small cell lung cancer (NSCLC). Tumor cells deficient in LKB1 may be uniquely sensitized to metabolic stresses, which may offer a therapeutic window in oncology. To address this question we have explored how functional LKB1 impacts the metabolism of NSCLC cells using 13C metabolic flux analysis. Isogenic NSCLC cells expressing functional LKB1 exhibited higher flux through oxidative mitochondrial pathways compared to those deficient in LKB1. Re-expression of LKB1 also increased the capacity of cells to oxidize major mitochondrial substrates, including pyruvate, fatty acids, and glutamine. Furthermore, LKB1 expression promoted an adaptive response to energy stress induced by anchorage-independent growth. Finally, this diminished adaptability sensitized LKB1-deficient cells to combinatorial inhibition of mitochondrial complex I and glutaminase. Together, our data implicate LKB1 as a major regulator of adaptive metabolic reprogramming and suggest synergistic pharmacological strategies for mitigating LKB1-deficient NSCLC tumor growth.  相似文献   

9.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

10.
1. Mitochondria were isolated according to their cellular location within the fibers of pooled gastrocnemius and plantaris muscle of the rat. This procedure yields two populations of mitochondria which display different biochemical properties. 2. The adaptive response of these mitochondria populations to the chronic exposure to different elevated energy demands (different modes of exercise training) was investigated. 3. The observed changes in mitochondrial protein content and cytochrome oxidase activity in the respective mitochondria population suggests that each population is capable of independent adaptations. 4. The adaptive response of each mitochondria population, furthermore, was predictable with respect to the metabolic energy demand of the exercise training workload.  相似文献   

11.
Previous suggestions of CpG-specific apoptotic commitment implied critical epigenetic modulation of house-keeping genes which have canonical CpG islands at 5 promoter regions. Differential housekeeping gene activity however has not been shown. Using a focussed microarray (genechip) of 22 housekeeping genes we show this in apoptosis induced in human Chang liver cells by DCNP (2,6-dichloro-4-nitrophenol), a non-genotoxic inhibitor of sulfate detoxification. 3–7 folds downregulation of 9 genes in glycolysis, tricarboxylic acid cycle and the respiratory electron transport chain suggested gene-directed energy depletion which was correlated with observed ATP depletion. 4 folds downregulation of the pyruvate dehydrogenease gene suggested gene-directed metabolic acidosis which was correlated with observed cell acidification. Other differential housekeeping gene activity, including 4 folds upregulation of microtubular alpha-tubulin gene, and 2 folds upregulation of ubiquitin, also had a bearing on apoptosis. Broadspectrum zVAD-fmk caspase inhibition abolished 200 bp DNA ladder fragmentations but not the CpG-specific megabase fragmentations and other hallmarks of cell destruction, suggesting a caspase-independent cell death. Death appeared committed at gene-level.  相似文献   

12.
Fructose 2, 6-Bisphosphate in Hypoglycemic Rat Brain   总被引:2,自引:2,他引:0  
Abstract: Fructose 2,6-bisphosphate has been studied during hypoglycemia induced by insulin administration (40 IU/kg). No changes in content of cerebral fructose 2,6-bisphosphate were found in mild hypoglycemia, but the level of this compound was markedly decreased in hypoglycemic coma and recovered after 30 min of glucose administration. To correlate a possible modification of the concentration of the metabolite with selective regional damage occurring during hypoglycemic coma, we have analyzed four cerebral areas (cortex, striatum, cerebellum, and hippocampus). Fructose 2,6-bisphosphate concentrations were similar in the four areas analyzed; severe hypoglycemia decreased levels of the metabolite to the same extent in all the brain areas studied. The decrease in content of fructose 2,6-bisphosphate was not always accompanied by a parallel decrease in ATP levels, a result suggesting that the low levels of the bisphosphorylated metabolite during hypoglycemic coma could be due to the decreased 6-phosphofructo-2-kinase activity, mainly as a consequence of the fall in concentration of its substrate (fructose 6-phosphate). These results suggest that fructose 2,6-bisphosphate could play a permissive role in cerebral tissue, maintaining activation of 6-phosphofructo-l-kinase and glycolysis.  相似文献   

13.
Autophagy is a process by which cytoplasmic organelles can be catabolized either to remove defective structures or as a means of providing macromolecules for energy generation under conditions of nutrient starvation. In this study we demonstrate that mitochondrial autophagy is induced by hypoxia, that this process requires the hypoxia-dependent factor-1-dependent expression of BNIP3 and the constitutive expression of Beclin-1 and Atg5, and that in cells subjected to prolonged hypoxia, mitochondrial autophagy is an adaptive metabolic response which is necessary to prevent increased levels of reactive oxygen species and cell death.  相似文献   

14.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2) catalyzes the synthesis and degradation of fructose 2,6-bisphosphate (Fru-2,6-P2), a signalling molecule that controls the balance between glycolysis and gluconeogenesis in several cell types. Four genes, designated Pfkfb1-4, code several PFK-2 isozymes that differ in their kinetic properties, molecular masses, and regulation by protein kinases. In rat tissues, Pfkfb3 gene accounts for eight splice variants and two of them, ubiquitous and inducible PFK-2 isozymes, have been extensively studied and related to cell proliferation and tumour metabolism. Here, we characterize a new kidney- and liver-specific Pfkfb3 isozyme, a product of the RB2K3 splice variant, and demonstrate that its expression, in primary cultured hepatocytes, depends on hepatic cell proliferation and dedifferentiation. In parallel, our results provide further evidence that ubiquitous PFK-2 is a crucial isozyme in supporting growing and proliferant cell metabolism.  相似文献   

15.
Evacuolated mesophyll protoplasts from oat (Avena sativa L.) were fractionated by a membrane-filtration technique. This method of rapid quenching of metabolic reactions permitted estimation of the in-vivo pools of fructose 2,6-bisphosphate (Fru2,6bisP) in the cytosol, chloroplasts and mitochondria. Vacuolar Fru2,6bisP was calculated as the difference between control protoplasts and evacuolated ones. The results indicate that Fru2,6bisP is exclusively cytosol-located in oat mesophyll protoplasts. Assuming a cytosolic volume of about 2 pl per evacuolated protoplast, the cytosolic concentration there was 11 M if protoplasts were in darkness. Illumination of either control or evacuolated protoplasts resulted in a significant decrease in the Fru2,6bisP content within 5 min.Abbreviations EPs evacuolated protoplasts - Fru2,6bisP fructose 2,6-bisphosphate - PFP fructose 6-phosphate kinase (pyrophosphate-dependent), EC 2.7.1.90 - PEPCase phosphoenolpyruvate carboxylase, EC 4.1.1.31  相似文献   

16.
When oxygen becomes limiting, cells shift primarily to a glycolytic mode for generation of energy. A key regulator of glycolytic flux is fructose-2,6-bisphosphate (F-2,6-BP), a potent allosteric regulator of 6-phosphofructo-1-kinase (PFK-1). The levels of F-2,6-BP are maintained by a family of bifunctional enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB or PFK-2), which have both kinase and phosphatase activities. Each member of the enzyme family is characterized by their phosphatase:kinase activity ratio (K:B) and their tissue-specific expression. Previous work demonstrated that one of the PFK-2 isozyme genes, PFKFB-3, was induced by hypoxia through the hypoxia-inducible factor-1 (HIF-1) pathway. In this study we examined the basal and hypoxic expression of three members of this family in different organs of mice. Our findings indicate that all four isozymes (PFKFB-1-4) are responsive to hypoxia in vivo. However, their basal level of expression and hypoxia responsiveness varies in the different organs studied. Particularly, PFKFB-1 is highly expressed in liver, heart and skeletal muscle, with the highest response to hypoxia found in the testis. PFKFB-2 is mainly expressed in the lungs, brain and heart. However, the highest hypoxia responses are found only in liver and testis. PFKFB-3 has a variable low basal level of expression in all organs, except skeletal muscle, where it is highly expressed. Most importantly, its hypoxia responsiveness is the most ample of all three genes, being strongly induced in the lungs, liver, kidney, brain, heart and testis. Further studies showed that PFKFB-1 and PFKFB-2 were highly responsive to hypoxia mimics such as transition metals, iron chelators and inhibitors of HIF hydroxylases, suggesting that the hypoxia responsiveness of these genes is also regulated by HIF proteins. In summary, our data demonstrate that PFK-2 genes are responsive to hypoxia in vivo, indicating a physiological role in the adaptation of the organism to environmental or localized hypoxia/ischemia.  相似文献   

17.
Both the synthesis and the degradation of Fru-2,6-P2 are catalyzed by a single enzyme protein; ie, the enzyme is bifunctional. This protein, which we have designated 6-phosphofructo 2-kinase/fructose 2,6-bisphosphatase is an important enzyme in the regulation of hepatic carbohydrate metabolism since its activity determines the steady-state concentration of fructose 2,6-P2, an activator of 6-phosphofructo 1-kinase and an inhibitor of fructose 1,6-bisphosphatase. Regulation of the bifunctional enzyme in intact cells is a complex function of both covalent modification via phosphorylation/dephosphorylation and the influence of substrates and low molecular weight effectors. Recent evidence suggests that both reactions may proceed by two-step transfer mechanisms with different phosphoenzyme intermediates. The enzyme catalyzes exchange reactions between ADP and ATP and between fructose 6-P and fructose 2,6-P2. A labeled phosphoenzyme is formed rapidly during incubation with [2-32P]Fru-2,6-P2. The labeled residue has been identified as 3-phosphohistidine. However, it was not possible to demonstrate significant labeling of the enzyme directly from [gamma-32P]ATP. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a fructose 2,6-bisphosphatase site which is readily phosphorylated by fructose 2,6-P2. Additional evidence in support of two active sites include: limited proteolysis with thermolysin results in loss of 6-phosphofructo 2-kinase activity and activation of fructose 2,6-bisphosphatase, mixed function oxidation results in inactivation of the 6-phosphofructo 2-kinase but no affect on the fructose 2,6-bisphosphatase, N-ethylmaleimide treatment also inactivates the kinase but does not affect the bisphosphatase, and p-chloromercuribenzoate immediately inactivates the fructose 2,6-bisphosphatase but not the 6-phosphofructo 2-kinase. Our findings indicate that the bifunctional enzyme is a rather complicated enzyme; a dimer, probably with two catalytic sites reacting with sugar phosphate, and with an unknown number of regulatory sites for most of its substrates and products. Three enzymes from Escherichia coli, isocitric dehydrogenase kinase/phosphatase, glutamine-synthetase adenylyltransferase, and the uridylyltransferase for the regulatory protein PII in the glutamine synthetase cascade system also catalyze opposing reactions probably at two discrete sites. All four enzymes are important in the regulation of metabolism and may represent a distinct class of regulatory enzymes.  相似文献   

18.
To determine whether 2,6-dichlorophenol is solely a sex pheromone, the response to it by the various stages of the American dog tick, Dermacentor variabilis, were compared. In contrast to adults, 2,6-dichlorophenol was attractive to unfed nymphs and to unfed larvae. Use of this chemical also prompted the expression of a novel type of feeding posture behavior in adults. The overlap in attraction to other substituted phenols plus the lack of functional value of this response for larvae and nymphs rules out the possibility that 2,6-dichlorophenol is a general attractant. However, 2,6-dichlorophenol likely plays a dual role as an attachment stimulant in the adult tick.Undergraduate Research Program in Biology  相似文献   

19.
能量代谢的生理调节是小型哺乳动物应对不同环境温度的重要策略之一,为探讨暖温下代谢产热在体重和体脂适应性调节中的作用和机理,本研究将雌性黑线仓鼠(Cricetulus barabensis)暴露于暖温(30°C)1个月、3个月和4个月,测定体重、摄入能、代谢产热、体脂含量、褐色脂肪组织(BAT)细胞色素c氧化酶(COX)活性和解偶联蛋1 (UCP1) mRNA表达等。结果显示,暖温对黑线仓鼠体重无显著影响,但使脂肪含量显著增加。与室温组相比(21°C),暖温组消化率显著升高,但摄入能和消化能显著降低;暖温下非颤抖性产热(NST)显著降低,脑、肝脏和心脏COX活性、BAT COX活性和UCP1 mRNA的表达显著下调。结果表明,暖温下降低代谢产热补偿了能量摄入的减少,机体处于正能量平衡状态,是脂肪含量显著增加的主要原因之一。脑、肝脏、心脏和BAT代谢活性降低是代谢产热降低的主要机制,与脂肪累积有关。  相似文献   

20.
6-Phosphofructo-2-kinase (ATP: D-fructose-6-phosphate-2-phosphotransferase) and D-fructose-2,6-bisphosphatase activities have been found in extracts prepared from etiolated mung bean seedlings. The activity of 6-phosphofructo-2-kinase exhibits a sigmoidal shape in response to changes in concentrations of both substrates, D-fructose 6-phosphate and ATP (S0.5 values of 1.8 and 1.2 mM, respectively). Inorganic orthophosphate (Pi) has a strong stimulating effect on the 2-kinase activity (A0.5 at about 2 mM), moderately increasing the Vmax and modifying the response into hyperbolic curves with Km values of 0.4 and 0.2 mM for fructose 6-phosphate and ATP, respectively. 3-Phosphoglycerate (I0.5 about 0.15 mM) partially inhibited the kinase activity by counteracting the Pi activation. In contrast, the activity of D-fructose-2,6-bisphosphatase (Km 0.38 mM) is strongly inhibited by Pi (I0.5 0.8 mM) lowering its affinity to fructose-2,6-P2 (Km 1.4 mM). 3-Phosphoglycerate activites the enzyme (A0.5 at about 0.3 mM) without causing a significant change in its Km for fructose-2,6-P2. The activities of both of these enzymes in relationship to the metabolic role of D-fructose 2,6-bisphosphate in the germinating seed is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号