首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
An autotrophic sulfur oxidizer,Thiobacillus sp. ASWW-2, was isolated from activated sludge, and its sulfur oxidation activity was characterized.Thiobacillus sp. ASWW-2 could oxidize elemental sulfur on the broad range from pH 2 to 8. When 5–50 g/L of elemental sulfur was supplemented as a substrate, the growth and sulfur oxidation activity ofThiobacillus sp. ASWW-2 was not inhibited. The specific sulfur oxidation rate of strain ASWW-2 decreased gradually until sulfate was accumulated in medium up to 10 g/L. In the range of sulfate concentration from 10 g/L to 50 g/L, the sulfur oxidation rate could keep over 2.0 g-S/g-DCW-d. It indicated thatThiobacillus sp. ASWW-2 has tolerance to high concentration of sulfate.  相似文献   

2.
Biogenic production of sulfide in wastewater treatment plants involves odors, toxicity and corrosion problems. The production of sulfide is a consequence of bacterial activity, mainly sulfate-reducing bacteria (SRB). To prevent this production, the efficiency of nitrate addition to wastewater was tested at plant-scale by dosing concentrated calcium nitrate (Nutriox) in the works inlet. Nutriox dosing resulted in a sharp decrease of sulfide, both in the air and in the bulk water, reaching maximum decreases of 98.7% and 94.7%, respectively. Quantitative molecular microbiology techniques indicated that the involved mechanism is the development of the nitrate-reducing, sulfide-oxidizing bacterium Thiomicrospira denitrificans instead of the direct inhibition of the SRB community. Denitrification rate in primary sedimentation tanks was enhanced by nitrate, being this almost completely consumed. No significant increase of inorganic nitrogen was found in the discharged effluent, thus reducing potential environmental hazards to receiving waters. This study demonstrates the effectiveness of nitrate addition in controlling sulfide generation at plant-scale, provides the mechanism and supports the environmental adequacy of this strategy.  相似文献   

3.
一株嗜盐嗜碱硫氧化菌的筛选、鉴定及硫氧化特性   总被引:1,自引:0,他引:1  
【背景】沼气和天然气等清洁能源中往往会含有一定量的硫化氢,硫化氢的存在不仅污染环境,而且对人类危害很大。【目的】以硫代硫酸钠为唯一硫源从巴丹吉林沙漠盐碱湖岸边沉积物中分离筛选得到一株硫氧化菌BDL05,并研究其硫氧化特性。【方法】通过形态观察、生理生化特征及16S rRNA基因序列分析对硫氧化菌BDL05进行鉴定。【结果】菌株BDL05为革兰氏阴性菌,弧状,其16S rRNA基因序列与Thiomicrospira microaerophila ASL 8-2的相似性达99.8%,将其命名为Thiomicrospira microaerophila BDL05。该菌氧化硫代硫酸盐的最适pH为9.3,最适总钠盐浓度为0.8mol/L,在以硫化钠为硫源的气升式反应器中单质硫的生成率为94.7%,生成速率为3.0 mmol/(L·h)。【结论】菌株Thiomicrospira microaerophila BDL05为嗜盐嗜碱硫氧化菌,其耐盐耐碱性较强,比生长速率快,硫化钠氧化能力较强,是一株在气体生物脱硫方面具有应用价值的菌株。  相似文献   

4.
A process to obtain optically pure l-alanine has been developed using batch and continuous stirred tank reactors with a new l-aminoacylase-producing bacterium Pseudomonas sp. BA2 immobilized in calcium alginate beads coated with glutaraldehyde. The maximum production of l-alanine in a continuous stirred tank reactor was 11.26 g after 2 days of operation which is higher than that previously reported.  相似文献   

5.
Abstract Small inverse isotope effects of 1–3‰ were consistently observed for the oxidation of sulfide to elemental sulfur during anaerobic photometabolism by Chromatium vinosum . The inverse fractionation can be accounted for by an equilibrium isotope effect between H2S and HS, and may indicate that C. vinosum (and other photosynthetic bacteria) utilizes H2S rather than HS as the substrate during sulfide oxidation.  相似文献   

6.
The floating filter technique was successfully adapted for the isolation of the dominant, chemolithoautotrophic, sulfide-oxidizing bacterium from a sulfur-producing reactor after conventional isolation techniques had failed. The inoculated polycarbonate filters, floating on mineral medium, were incubated under gaseous hydrogen sulfide at non-toxic levels. This technique gave 200-fold higher recoveries than conventional isolation techniques. Viable counts on the filters, making up 15% of the total count, appeared to be all of the same species. Chemostat cultures of the new isolate had a very high sulfur-forming capacity, converting almost all hydrogen sulfide in the medium to elemental sulfur under high sulfide loads (27.5 mmol l-1 h-1) and fully aerobic conditions. This behaviour closely resembled that of the microbial community in the sulfur-producing reactor. Moreover, similar protein patterns were obtained by electrophoresis of cell-free extracts from the isolate and the mixed culture. It has therefore been concluded that this isolate represents the dominant sulfide-oxidizing population in the reactor. The isolate has been shown to be a new Thiobacillus species, related to Thiobacillus neapolitanus. In view of the general confusion currently surrounding the taxonomy of the thiobacilli, a new species has not been formally created. Instead, the isolate has been given the working name Thiobacillus sp. W5.  相似文献   

7.
Orbitally shaken bioreactors (OSRs) support the suspension cultivation of animal cells at volumetric scales up to 200 L and are a potential alternative to stirred‐tank bioreactors (STRs) due to their rapid and homogeneous mixing and high oxygen transfer rate. In this study, a Chinese hamster ovary cell line producing a recombinant antibody was cultivated in a 5 L OSR and a 3 L STR, both operated with or without pH control. Effects of bioreactor type and pH control on cell growth and metabolism and on recombinant protein production and glycosylation were determined. In pH‐controlled bioreactors, the glucose consumption and lactate production rates were higher relative to cultures grown in bioreactors without pH control. The cell density and viability were higher in the OSRs than in the STRs, either with or without pH control. Volumetric recombinant antibody yields were not affected by the process conditions, and a glycan analysis of the antibody by mass spectrometry did not reveal major process‐dependent differences in the galactosylation index. The results demonstrated that OSRs are suitable for recombinant protein production from suspension‐adapted animal cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1174–1180, 2016  相似文献   

8.
Lens PN  Dijkema C  Stams AJ 《Biodegradation》1998,9(3-4):179-186
Applications of nuclear magnetic resonance (NMR) to study a variety of physiological and biochemical aspects of bacteria with a role in the sulfur cycle are reviewed. Then, a case-study of high resolution13 C-NMR spectroscopy on sludges from bioreactors used for treating sulfate and sulfide rich wastewaters is presented.13 C-NMR was used to study the effect of sulfate and butyrate on propionate conversion by mesophilic anaerobic (methanogenic and sulfate reducing) granular sludge and microaerobic (sulfide oxidizing) flocculant sludge. In the presence of sulfate, propionate was degraded via the randomising pathway in all sludge types investigated. This was evidenced by scrambling of [3-13C]propionate into [2-13C]propionate and the formation of acetate equally labeled in the C1 and C2 position. In the absence of sulfate, [3-13C]propionate scrambled to a lesser extend without being degraded further. Anaerobic sludges converted [2,3-13C]propionate partly into the higher fatty acid 2-methyl[2,3-13C]butyrate during the simultaneous degradation of [2,3-13C]propionate and butyrate. [4,5-13C]valerate was also formed in the methanogenic sludges. Up to 10% of the propionate present was converted via these alternative degradation routes. Labeled butyrate was not detected in the incubations, suggesting that reductive carboxylation of propionate does not occur in the sludges.  相似文献   

9.
The effects of hydraulic retention time (HRT) and sulfide toxicity on ethanol and acetate utilization were studied in a sulfate-reducing fluidized-bed reactor (FBR) treating acidic metal-containing wastewater. The effects of HRT were determined with continuous flow FBR experiments. The percentage of ethanol oxidation was 99.9% even at a HRT of 6.5 h (loading of 2.6 g ethanol L(-1) d(-1)), while acetate accumulated in the FBR with HRTs below 12 h (loading of 1.4 g ethanol L(-1) d(-1)). Partial acetate utilization was accompanied by decreased concentrations of dissolved sulfide (DS) and alkalinity in the effluent, and eventually resulted in process failure when HRT was decreased to 6.1 h (loading of 2.7 g ethanol L(-1) d(-1)). Zinc and iron precipitation rates increased to over 600 mg L(-1) d(-1) and 300 mg L(-1) d(-1), respectively, with decreasing HRT. At HRT of 6.5 h, percent metal precipitation was over 99.9%, and effluent metal concentrations remained below 0.08 mg L(-1). Under these conditions, the alkalinity produced by substrate utilization increased the wastewater pH from 3 to 7.9-8.0. The percentage of electron flow from ethanol to sulfate reduction averaged 76 +/- 10% and was not affected by the HRT. The lowest HRT did not result in significant biomass washout from the FBR. The effect of sulfide toxicity on the sulfate-reducing culture was studied with batch kinetic experiments in the FBR. Noncompetitive inhibition model described well the sulfide inhibition of the sulfate-reducing culture. (DS) inhibition constants (K(i)) for ethanol and acetate oxidation were 248 mg S L(-1) and 356 mg S L(-1), respectively, and the corresponding K(i) values for H(2)S were 84 mg S L(-1) and 124 mg S L(-1). In conclusion, ethanol oxidation was more inhibited by sulfide toxicity than the acetate oxidation.  相似文献   

10.
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L−1). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30 °C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8 h. The reactor R1 operating with a HRT of 2 h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H2 mol−1 glucose with 1.3 mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter.  相似文献   

11.
Precursor feeding strategy for increasing the yield of conessine, a steroidal alkaloid of Holarrhena antidysenterica, was established in cell suspension culture. A total of 50 mg/L added cholesterol was converted into 43 mg/L of alkaloid, 90% of which constituted the conessine. By applying the precursor feeding policy to the cell suspension culture in modified Murashige and Skoog (MS) medium, a total of 143 mg/L of alkaloid was produced in 8 days. In this way the alkaloid content of the cells was increased more than six times compared to that obtained in the standard MS medium. The steps leading to biotransformation of cholesterol into alkaloids were unaffected by phosphate. The shake flask data were successfully transferred to a bench scale 6-L stirred tank bioreactor in which the specific biosynthetic rate of alkaloid production was 110 mg/100 g dry cell weight per day, about 160 times higher than that of whole plant.  相似文献   

12.
The kinetics of sulfur oxidation by Acidithiobacillus ferrooxidans in shaking flasks and a 10-L reactor was studied. The observed linearity of growth and sulfur oxidation was explained by sulfur limitation. Total cell yield was not significantly different for exponential growth as compared to growth during the sulfur-limiting phase. Kinetic studies of sulfur oxidation by growing and nongrowing bacteria indicated that both free and adsorbed bacteria oxidize sulfur. Changes in the number of free bacteria rather than cells adsorbed on sulfur were better predictors of the kinetics of sulfur oxidation, indicating that the free bacteria were performing sulfur oxidation. The active growth phase always followed adsorption of bacteria on sulfur; however, the special metabolic role of adsorbed bacteria was unclear. Their activity in sulfur solubilization was considered.  相似文献   

13.
In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of granule activity, improvement of long-term granule stability, and a better understanding of aerobic granulation mechanisms in CFRs, especially in full-scale applications.  相似文献   

14.
The removal of dimethyl sulfide (DMS) from industrial gas streams has received a high priority due to its very low odorous threshold value and relatively low biodegradability compared to other reduced sulfur compounds. A variety of bacteria that utilize DMS as a carbon/energy source have been studied and the degradation pathway elucidated. However, to date, there have been few reports on the industrial application of such bacteria inoculated into a bioreactor for DMS treatment. An additional problem of such systems is the accumulation of intermediate metabolites that strongly impact on DMS removal by the microbe. The results reported here were obtained using a bioreactor inoculated with the H(2)S-degrader Pseudomonas putida and the DMS-degrader Microbacterium sp. NTUT26 to facilitate removal of metabolic intermediates and DMS. This bioreactor performed well (1.71 g-S/day/kg-dry packing material) in terms of DMS gas removal, based on an evaluation of the apparent kinetics and maximal removal capacity of the system. Under varying conditions (changes in start-up, inlet loading, shutdown, and re-start), the bioreactor inoculated with Microbacterium sp. NTUT26 and P. putida enhanced removal of high concentrations of DMS. Our results suggest that this type of bioreactor system has significant potential applications in treating (industrial) DMS gas streams.  相似文献   

15.
High yield synthesis of two new oxodiperoxo-molybdate, PPh4[MoO(O2)2(HPEOH)] (1), and -tungstate, PPh4[WO(O2)2(HPEOH)] (2), complexes with 1-(2′-hydroxyphenyl) ethanone oxime (HPEOH2) as organic ligand has been achieved by adding methanol solution of the ligand to the pale-yellow solution obtained by dissolving molybdic-/tungstic-acid (freshly prepared) in hydrogen peroxide and precipitating the complexes using tetraphenylphosphonium chloride. The orange-yellow complexes have been characterized by elemental analysis, IR, 1H NMR, UV-Vis spectroscopy and finally by X-ray structure analysis. Both the complexes function as facile olefin epoxidation catalysts with hydrogen peroxide as terminal oxidant and bicarbonate as a co-catalyst at room temperature. Catalytic potentiality of 1 and 2 is also exhibited in the case of oxidation of alcohols, amines and sulfides. The catalysts are very much efficient especially in olefin epoxidation giving high yield, TON (turnover number) and TOF (turnover frequency). The method described is environmentally benign and cost-effective in all the cases.  相似文献   

16.
Species of Pseudorhabdosynochus were studied from fresh specimens collected from Epinephelus fasciatus and E. merra off New Caledonia, South Pacific, and specimens deposited in Museums. Experiments on two species demonstrated that the sclerotised hollow organs, such as the quadriloculate male copulatory organ and the vagina, may show differences in measurements of up to 50% when flattened. P. caledonicus n. sp. is described from E. fasciatus in New Caledonia, on which it is relatively rare; it is distinguished on the basis of the quadriloculate organ, which has a very thin anterior wall, the sclerotised parts of the vagina in form of a straight tube with a star-shaped lateral structure, and the squamodiscs composed of 11 open rows of rodlets. P. cupatus (Young, 1969) is redescribed from abundant material from E. fasciatus off New Caledonia (new geographical record) and compared with paratype specimens from Australia (from E. fasciatus and E. merra) and specimens from E. fasciatus in the Red Sea (both herein redescribed and figured); a specimen was also found on a slide from E. merra off Vanuatu. P. melanesiensis (Laird, 1958) is redescribed from material from E. merra off New Caledonia (new geographical record) and compared with type-specimens (herein redescribed and figured) from the same host off Vanuatu. The structure of the sclerotised vagina in P. cupatus and P. melanesiensis is very similar, with a thin-walled tube and a heavily sclerotised structure with three loculi. P. vagampullum (Young, 1969) is redescribed from the paratypes from E. merra from Australia, but was not found in New Caledonia; specimens included among its paratypes (from E. merra in Australia), but different, are herein attributed to Pseudorhabdosynochus sp. 3. P. lantauensis (Beverley-Burton & Suriano, 1981) is redescribed from the paratype specimens from E. longispinis off Hong-Kong. A specimen found among the paratypes of P. cupatus belongs to a different species, herein designated as Pseudorhabdosynochus sp. 1. Specimens from E. longispinis off Hong-Kong, previously attributed to P. cupatus, are attributed to another species, Pseudorhabdosynochus sp. 2. The three species P. cupatus, Pseudorhabdosynochus sp. 1 and Pseudorhabdosynochus sp. 2 have in common a 'lamellosquamodisc' composed of central telescopic lamellae and peripheral rows of rodlets; they can be distinguished by the shape of the sclerotised vagina and measurements of the haptoral hard-parts. Specimens from E. longispinis off Hong-Kong, previously attributed to P. vagampullum, probably belong to a different species. Consequently, after these modified determinations, P. cupatus parasitises only E. fasciatus and E. merra, and P. melanesiensis and P. vagampullum parasitise only E. merra. With their wide geographical distribution and different species of Pseudorhabdosynochus in different localities, E. fasciatus and E. merra appear to represent excellent models for investigating monogenean biogeography in the Indo-Pacific Ocean.  相似文献   

17.
Aerobic granular sludge: recent advances   总被引:26,自引:1,他引:26  
Aerobic granulation, a novel environmental biotechnological process, was increasingly drawing interest of researchers engaging in work in the area of biological wastewater treatment. Developed about one decade ago, it was exciting research work that explored beyond the limits of aerobic wastewater treatment such as treatment of high strength organic wastewaters, bioremediation of toxic aromatic pollutants including phenol, toluene, pyridine and textile dyes, removal of nitrogen, phosphate, sulphate and nuclear waste and adsorption of heavy metals. Despite this intensive research the mechanisms responsible for aerobic granulation and the strategy to expedite the formation of granular sludge, and effects of different operational and environmental factors have not yet been clearly described. This paper provides an up-to-date review on recent research development in aerobic biogranulation technology and applications in treating toxic industrial and municipal wastewaters. Factors affecting granulation, granule characterization, granulation hypotheses, effects of different operational parameters on aerobic granulation, response of aerobic granules to different environmental conditions, their applications in bioremediations, and possible future trends were delineated. The review attempts to shed light on the fundamental understanding in aerobic granulation by newly employed confocal laser scanning microscopic techniques and microscopic observations of granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号