首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sulfur-oxidizing system of a strain of Thiobacillus thiooxidanswas obtained in cell-free state. The system is resolved intothree fractions and can be reconstituted from these fractions.Both the soluble and particulate fractions are required forthe oxidation of elementary sulfur. The soluble fraction wasfurther separated into two fractions, the collodion membrane-permeable(S-P)and the impermeable(S-IP). S-P contains a low molecular weight,relatively heat stable substance(s) which is indispensable forthe reconstitution of the sulfur-oxidizing system and was identifiedas a pyridine nucleotide. The function of S-P can be replacedby NAD or NADP, but not by cysteine nor GSH. Oxidation of NADH2 and NADPH2 is catalyzed by the particulatefraction. Oxidation of the latter is much more rapid than thatof the former. Oxidation of NADPH2 as well as sulfur oxidationis inhibited by cyanide, pCMB and CO, the CO-inhibition beingphoto-irreversible. However, strong inhibitors of sulfur oxidationsuch as DDC, 8-hydroxyquinoline and salicylaldoxime have noeffect on the oxidation of NADPH2. The optimum pH values for sulfur and sulfite oxidations by thecell-free extract are shifted to the neutral side in comparisonwith pH values by intact cells. 1V = References(I). 2Partly supported by a grant from the Ministry of Education. (Received April 3, 1969; )  相似文献   

2.
Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS2) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferrooxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the “indirect” mechanism. Mixed cultures of three isolates (strains T-21, T-23, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T-23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.  相似文献   

3.
Three c-type cytochromes were purified from the filamentous sulfur-oxidizing bacterium, Beggiatoa alba strain B18LD, by ammonium sulfate fractionation, flat bed isoelectric focusing and gel filtration. Two of the cytochromes; flavocytochrome c-554 and cytochrome c, were similar to cytochromes found in anoxygenic photosynthetic bacteria. Flavocytochrome c-554 had an apparent molecular weight of 21,000, an isoelectric focusing point at pH 4.4, contained FMN as the flavin component and had absorption maxima at 410, 450 and 470 nm in the oxidized form and at 417, 523 and 554 nm in the dithionite-reduced from. Cytochrome c was also an acidic protein with a pI of 4.8 and an apparent molecular weight of 18,000. The absorption spectra maxima were at 400, 490 and 635 nm in the oxidized form, at 424 and 550 nm in the dithione-reduced form and at 415 and 555 nm in the dithionite-reduced plus CO form. The third cytochrome characterized, cytochrome c-553 had an apparent molecular weight of 13,000, an isoelectric point at pH 4.4 and showed absorption maxima at 411 nm in the oxidized form and at 418, 523 and 553 nm in the dithionite-reduced form. Cytochrome c-553 was also isolated as a complex with a non-heme protein with a molecular weight of 16,000. The non-heme protein altered the absorption spectra and isoelectric point of cytochrome c-553.Abbreviations IEF isoelectric focusing - M r molecular weight - pI isoelectric point  相似文献   

4.
Two soluble cytochromes of the C-type, cytochrome c-551 andcytochrome c-550, were purified from the bacteriochlorophyll-containingcells of a facultative methylotroph, Protaminobacter ruber StrainNR-1, by ion-exchange chromatography and gel-filtration. Cytochrome c-551 had absorption maxima at 551, 522 and 416 nmin the reduced form, and at 525, 410 and 273 nm in the oxidizedform. This cytochrome was a slightly basic protein with an isoelectricpoint of 8.4. It had a mid-point redox potential of 272 mV atpH 7.0. The molecular weight of this protein was 13,500 and13,700 by sodium dodecylsulfate polyacrylamide gel electrophoresis(SDS-PAGE) and gel-filtration, respectively. Cytochrome c-550 had absorption maxima at 550, 522 and 415 nmin the reduced form, and at 527, 409 and 278 nm in the oxidizedform. This cytochrome was acidic, having an isoelectric pointof 4.3. It had a mid-point redox potential of 227 mV at pH 7.0.Its molecular weight was 19,500 and 22,000 by SDS-PAGE and gel-filtration,respectively. (Received August 4, 1984; Accepted October 22, 1984)  相似文献   

5.
The electrophoretically pure preparation of cytochrome c from Thiobacillus thiooxidans was obtained. The absorption spectrum exhibited maxima at 415, 521 and 550 mμ in reduced form. The various properties of the cytochrome were very close to these of mammalian cytochrome c, i. e., absorption spectrum, electrophoretic pattern, isoelectric point and E0′.

Electrophoretically homogenous preparation of NADPH-cytochrome c oxidoreductase was isolated from the soluble fraction of Thiobacillus thiooxidans. The purification of the enzyme was carried out using the fractionation with ammonium sulfate, the treatment with Amberlite IRC-50 and the disk electrophoresis.  相似文献   

6.
Cytochrome b561 was removed from chromatophores of a photoanaerobicallygrown Rhodopseudomonas sphaeroides by deoxycholate-cholate andTriton X-100 treatments of the chromatophores. The cytochromewas purified by ammonium sulfate fractionation and gel filtration.Its molecular weight was 45,000 (45 kD) and it was composedof three subunits with molecular weights of 23 kD, 19 kD andless than 6 kD. The cytochrome preparation had absorption maximaat 414 nm in the oxidized form, and at 428, 530 and 561 nm inthe reduced form. Its pi was 4.8. The midpoint potential ofthis cytochrome was 153 mV at pH 7.0. The compound was autooxidizable,and it had cytochrome c oxidase activity. (Received May 16, 1983; Accepted September 8, 1983)  相似文献   

7.
A soluble cytochrome c-552 from Thiobacillus thiooxidans was highly purified and its physico-chemical properteis were studied. The absorption maxima were at 552,523,418 nm in the reduced from and at 412 nm in the oxidized form. The pyridine hemochrome spectrum was the same as that of other cytochromes c. The molecular weight, estimated by the gel filtration method, was found to be 12,600. The isoelectric point was determined to be 9.2-9.3 by the electrofocusing technique. The standard oxidation-reduction potential of this cytochrome was +0.247 V.  相似文献   

8.
Nitrite reductase [nitric-oxide : (acceptor) oxidoreductase,EC 1.7.2.1 [EC] ] from a denitrifying phototrophic bacterium, Rhodopseudomonassphaeroides forma sp. denitrificans, was purified. The molecularweight of the enzyme, estimated by gel-filtration, was 80,000.Sodium dodecyl sulfate polyacrylamide gel electrophoresis ofthe purified enzyme showed a single 39,000 molecular weightband, indicating that the enzyme was composed of two subunitsof identical molecular weight. The oxidized form of the enzymeexhibited maximum absorption at 280 nm, 450 nm and 590 nm, andthe reduced form only at 280 nm. The ESR spectrum of a frozensolution of the oxidized enzyme showed a typical spectrum patternof a copper protein, suggesting that two types of Cu2+ existedwithin the enzyme. Estimates with an atomic absorption spectrophotometer,revealed two copper atoms per molecule. The optimum pH of theenzyme was 7.0. Km for nitrite was estimated to be 51 µM,and the optimum temperature, 30?C. The enzyme was inhibitedby CO, potassium cyanide and diethyldithiocarbamate and activatedby monoiodoacetate. Phenazine methosulfate, 2,6-dichlorophenolindophenol,horse heart cytochrome c, and cytochrome c2 from this bacteriumwere suitable electron donors. The enzyme also showed cytochromec oxidase activity. (Received May 4, 1978; )  相似文献   

9.
Thiobacillus thiooxidans cells oxidized elemental sulfur to sulfite, with 1 mol of O2 consumption per mol of sulfur oxidized to sulfite, when the oxidation of sulfite was inhibited with 2-n-heptyl-4-hydroxyquinoline N-oxide.  相似文献   

10.
Two cytochromes of the C-type, c-554 and c-549, were isolated from the soluble fraction of an extreme thermophile, Thermus thermophilus HB8. Highly purified cytochrome c-554 had absorption maxima at 554, 522, and 417 nm in the reduced state, and at 410 nm in the oxidized state. The alpha-band of the reduced state resembled that of "split-alpha" cytochromes. The isoelectric point was at pH 4.9, and the molecular weight was about 29,000. Cytochrome c-549, partially purified, had absorption maxima a6 549,520, and 416 nm in the reduced form, and at 408 nm in the oxidized form. The molecular weight was about 25,000. Both were slowly auto-oxidizable, and did not combine with CO.  相似文献   

11.
Properties of the cell-free extract, prepared from a strainof Thiobacillus thiooxidans by sonic disruption followed byfractionation with centrifugatiori, were investigated with referenceto its sulfite-oxidizing activity. Without the addition of cofactors the particulate fraction(F-P)catalyzed oxidation of sulfite with oxygen or bacterial cytochromec-552 obtained from Pseudomonas stutzeri as electron acceptor.TMPD reduced by ascorbic acid was also oxidized by F-P. Thesoluble fraction(F-S) showed no activity in oxidizing sulfiteand TMPD, but stimulated TMPD oxidation by F-P. Oxygen uptake with either sulfite or TMPD as substrate was inhibitedby KCN, NaN3, CO and c-phenanthroline. CO-Inhibition was reversedby light. Reduction of cytochrome c-552 by sulfite was insensitiveto these agents. Antimycin A markedly inhibited sulfite oxidation with eitheroxygen or cytochrome c-552 as electron acceptor, but was withouteffect on TMPD oxidation. DDC and SAO, both strong inhibitors of sulfur oxidation, didnot affect sulfite and TMPD oxidations. Cytochromes of the a, b and c types were contained in F-P. Thesecytochromes were rapidly reduced when F-P was incubated withsulfite. Cytochrome(s) of the c type was present in F-S, too. 1VI.=References (3) 2Partly supported by a grant from the Ministry of Education 3Present address: Sanyo Women's College, Hatsukaichi, Hiroshima738, Japan 4Present address: Department of Biochemistry, Hiroshima UniversitySchool of Dentistry, Hiroshima 734, Japan (Received May 15, 1970; )  相似文献   

12.
Summary Direct bioleaching (no iron(II) present) by Thiobacillus ferrooxidans mainly occurs on the surface of the very insoluble sulphides but is more important in solution when the sulphides are more soluble. In this case, Thiobacillus thiooxidans, normally not able to leach directly insoluble sulphides, has an effective leaching action.  相似文献   

13.
Copper dissolution from a sulfide ore (with covellite as the main copper phase) was investigated in cultures of Thiobacillus ferrooxidans or Thiobacillus thiooxidans and in abiotic controls. In unsupplemented media, T. ferrooxidans was more efficient than T. thiooxidans. In the presence of ferric iron, the dissolution of covellite was not significantly different in cultures inoculated with T. ferrooxidans or T. thiooxidans. However, the most extraction was found in T. thiooxidans cultures supplemented with ferrous sulfate. The first results were explained by the mechanism proposed by Schippers and Sand (Appl Envir Microbiol 65:319-321, 1999), which involves polysulfides and sulfur as intermediates. This mechanism was extended to explain the behavior of T. thiooxidans culture supplemented with ferrous iron.  相似文献   

14.
Abstract Membrane-bound cytochrome c, cytochrome c-552 (m) was purified from Thiobacillus ferrooxidans . It showed an absorption peak at 410 nm in the oxidized form, and peaks at 552, 523 and 416 nm in the reduced form. Its molecular mass, E m,7 and isoelectric point were 22,300, +0.336 volt and 9.1, respectively. Another membrane-bound cytochrome c , cytochrome c -550 (m) was also purified. It showed an absorption peak at 408 nm in the oxidized form, and peaks at 550, 523 and 418 nm in the reduced form. Its molecular mass was estimated to be 51,000. Ferrocytochromes c -552 (m) and c -55 (m) were oxidized by cytochrome c oxidase of the bacterium. The reactivity with the oxidase of cytochrome c -550 (m) was higher than that of cytochrome c -552 (s) (soluble cytochrome) of the bacterium, while the reactivity of cytochrome c -552 (m) was greatly lower than that of cytochrome c -552 (s).  相似文献   

15.
Accumulation of elemental sulfur during pyrite oxidation lowers the efficiency of coal desulfurization and bioleaching. In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an iron(II)-ion-oxidizing organism without sulfur-oxidizing capacity, from the pyritic sulfur moiety about 10% elemental sulfur, 2% pentathionate, and 1% tetrathionate accumulated by a recently described cyclic pyrite oxidation mechanism. In the case of pure cultures of Thiobacillus ferrooxidans and mixed cultures of L. ferrooxidans and T. thiooxidans, pyrite was nearly completely oxidized to sulfate because of the capacity of these cultures to oxidize both iron(II) ions and sulfur compounds. Pyrite oxidation in acidic solutions, mediated chemically by iron(III) ion, resulted in an accumulation of similar amounts of sulfur compounds as obtained with L. ferrooxidans. Changes of pH to values below 2 or in the iron ion concentration are not decisive for diverting the flux of sulfur compounds. The literature on pyrite bioleaching is in agreement with the findings indicating that the chemistry of direct and indirect pyrite leaching is identical. Received: 20 April 1998 / Received revision: 27 August 1998 / Accepted: 3 September 1998  相似文献   

16.
It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an α-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa 3-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 °C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A1 and myxothiazol, which are inhibitors of mitochondrial bc 1 complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.  相似文献   

17.
A soluble cytochrome, cytochrome c-551 was purified from an aerobic photosynthetic bacterium Erythrobacter species strain OCh 114 (ATCC No. 33942) by ammonium sulfate fractionation, ion-exchange chromatography and gel-filtration. The cytochrome had absorption maxima at 277, 410, and 524–525 nm in the oxidized form, and at 415, 522, and 550.5 nm in the reduced form. At 77 K, the -band of the absorption spectrum of the reduced form split in two at 547 and 549 nm. The millimolar absorption coefficient at 550.5 nm was 26.8 mM-1 cm-1 in the reduced form. This cytochrome was an acidic protein with an isoelectric point of 4.9. Its molecular weight was determined to be 15,000 by gel-filtration on Sephadex G-100 and 14,500 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The midpoint potential of this cytochrome was +250 mV at pH 7.0. This cytochrome did not bind CO.  相似文献   

18.
By immersing a few small cellophane bags containing BaCO3 powderin STARKEY's medium, the duration of lag phase in the growthof Thiobacillus thiooxidans is minimized and the yield of cellsis increased ten times that of the previous method. The activitiesof oxidation for sulfur and sulfite change with growth. Sulfiteis oxidized at a comparable rate to that of sulfur oxidationat pH values between 6.0 and 6.5. In the presence of cysteineor glutathione, thiosulfate can be oxidized at a pH above 5.0.At pH values below 4.5, apparent oxidation of thiosulfate andtetrathionate to sulfate is observed. This result is accountedfor by the facts that thiosulfate is decomposed to sulfur andsulfite under the acidic condition at pH values below 4.5, andthat tetrathionate is reduced to thiosulfate enzymatically.In the oxidation of tetrathionate, oxygen uptake begins aftera lag phase, the duration of which depends on the concentrationsof cells and of tetrathionate. Cysteine is oxidized to cystine.The oxidation is strongly inhibited by metal-chelating agents.The cysteine oxidizing activity is, however, quite stable andis not lost by treating cells with organic solvents, sonic oscillation,by heating or lyophilization. 1III=References (11). 2Partly supported by a grant from the Ministry of Education.  相似文献   

19.
The bacterial symbionts of many marine invertebrates contain ribulose 1,5-bisphosphate (RuBP) carboxylase but apparently no carboxysomes, polyhedral bodies containing RuBP carboxylase. In the few cases where polyhedral bodies have been observed they have not been characterised enzymatically. Polyhedral bodies, 50–90 nm in diameter, were observed in thin cell sections of Thiobacillus thyasiris the putative symbiont of Thyasira flexuosa and RuBP carboxylase activity was detected in both soluble and particulate fractions after centrifugation of cell-free extracts. RuBP carboxylase purified 90-fold from the soluble fraction was of high molecular weight and consisted of large and small subunits, with molecular weights of 53,110 and 11,100 respectively. Particulate RuBP carboxylase activity was associated with polyhedral bodies 50–100 nm in diameter, as revealed by density gradient centrifugation and electron microscopy. Therefore, the polyhedral bodies were inferred to be carboxysomes. Native electrophoresis of isolated carboxysomes demonstrated a major band which comigrated with the purified RuBP carboxylase and three minor bands of lower molecular weight. Sodium dodecyl-sulphate (SDS) gel electrophoresis of SDS-dissociated carboxysomes demonstrated nine major polypeptides two of which were the large and small subunits of RuBP carboxylase. The RuBP carboxylase subunits represented 21% of the total carboxysomal protein. The most abundant polypeptide had a molecular weight of 40,500. Knowledge of carboxysome composition is necessary to provide an understanding of carboxysome function.Abbreviations FPLC fast performance liquid chromatography - IB isolation buffer - PAGE polyacrylamide gel electrophoresis - RuBP carboxylase - ribulose 1,5-bisphosphate carboxylase/oxygenase - SDS sodium dodecyl-sulphate  相似文献   

20.
Three c-type cytochromes isolated from Nitrobacter agilis were purified to apparent homogeneity: cytochrome c-553, cytochrome c-550 and cytochrome c-549, 554. Their amino acid composition and other properties were studied. Cytochrome c-553 was isolated as a partially reduced form and could not be oxidized by ferricyanide. The completely reduced form of the cytochrome had absorption maxima at 419, 524 and 553 nm. It had a molecular weight of 25 000 and dissociated into two polypeptides of equal size of 11 500 during SDS gel electrophoresis. The isoelectric point of cytochrome c-553 was pH 6.8. The ferricytochrome c-550 exhibited an absorption peak at 410 nm and the ferrocytochrome c showed peaks at 416, 521 and 550 nm. The molecular weight of the cytochrome estimated by gel filtration and by SDS gel electrophoresis was 12 500. It had an Em(7) value of 0.27 V and isoelectric point pH 8.51. The N-terminal sequence of cytochrome c-550 showed a clear homology with the corresponding portions of the sequences of other c-type cytochromes. Cytochrome c-549, 554 possessed atypical absorption spectra with absorption peaks at 402 nm as oxidized form and at 419, 523, 549 and 554 nm when reduced with Na2S2O4. Its molecular weight estimated by gel filtration and SDS polyacrylamide gel electrophoresis was 90 000 and 46 000, respectively. The cytochrome had an isoelectric point of pH 5.6. Cytochrome c-549, 554 was highly autoxidizable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号