首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified in the DDT1 smooth muscle cell line a [3H]dihydroergocryptine-binding site having the characteristics of an alpha 1-adrenergic receptor. Specific binding of [3H]dihydroergocryptine to DDT1 cells grown either in monolayer or suspension culture was reversible, saturable, and of high affinity, and the binding site demonstrated stereoselectivity. [3H]Dihydroergocryptine dissociation constants of 1.4 +/- 0.2 nM and 1.4 +/- 0.3 nM were observed for suspension and monolayer cells, respectively. However, the concentration of binding sites in suspension-cultured cells (65,100 +/- 8,300 sites/cell) was significantly greater (p less than 0.001) than that found in monolayer cells (27,900 +/- 4,300 sites/cell). The order of agonist competition for the binding site was epinephrine (Ki = 0.92 +/- 0.32 microM) greater than or equal to norepinephrine (Ki = 2.2 +/- 1.0 microM) greater than isoproterenol (Ki = 137 +/- 17 microM), consistent with an alpha-adrenergic interaction. Results of competition experiments with specific antagonists prazosin (alpha 1-selective) or yohimbine (alpha 2-selective) and a computer modeling technique indicated that the alpha-adrenergic receptor of the DDT1 cell was predominantly (greater than 95%) the alpha 1-subtype.  相似文献   

2.
The fluorescent chelating agent quin 2 has been employed to monitor alterations of intracellular free Ca2+ concentrations ([Ca2+]i) in response to alpha 1-adrenergic receptor activation in adherent BC3H-1 cells. To correlate the kinetics of [Ca2+]i changes with transmembrane fluxes of this ion, continuous monitoring of [Ca2+]i has been undertaken on a monolayer of cells. Previous measurements of the transmembrane efflux of Ca2+ show a distinct lag in the response over a range of phenylephrine concentrations. By contrast, the elevation of [Ca2+]i is rapid (t1/2 approximately 2 s) and maintained for 30 s before it begins to decline to basal concentrations. The differences in kinetics indicate that the temporal delay in cellular Ca2+ efflux results from either activation of the transport system for Ca2+ extrusion or translocation of free Ca2+ to the transport site. The decline of [Ca2+]i with continued agonist exposure parallels both the efflux kinetics from the cell and the decline of total cellular Ca2+. At a time when free [Ca2+]i approaches the resting concentration, total cellular Ca2+ is reduced to a steady state value of 60% of that seen prior to stimulation. The Kact for phenylephrine-stimulated elevation in [Ca2+]i on the monolayer is 0.51 microM, which is similar to the Kact of 0.90 microM observed for phenylephrine-activated 45Ca2+ efflux. Addition of phentolamine subsequent to phenylephrine addition immediately reverses the agonist-stimulated Ca2+ mobilization, initiating a rapid return of [Ca2+]i to resting levels. A comparison of the kinetics of Ca2+ mobilization with its transmembrane flux suggests that the agonist augments the rate of recycling of intracellular Ca2+ between the free and bound states rather than causing release as a single bolus from the bound stores.  相似文献   

3.
In smooth muscle cells, agonists such as neurotransmitters or hormones can induce an increase in [Ca(2+)](i) via a release of intracellular stored calcium or/and an influx of extracellular calcium. The calcium entry pathway operates through a variety of plasmalemmal calcium channels which involve voltage-dependent and voltage-independent calcium channels. Voltage-independent calcium channels include (1) receptor-operated channels (ROCs) activated by agonist-receptor interaction and, in the majority of cases, the downstream signal transduction proteins, (2) store-operated channels (SOCs) activated by the emptying of intracellular Ca(2+) store (mainly the sarcoplasmic reticulum), (3) mechanosensitive or stretch-activated channels (SACs) activated by membrane stretch. Generally, voltage-independent calcium channels are calcium permeable non-selective cation channels with electrophysiological differences, complex regulatory mechanisms and pharmacology. Although the molecular identity of voltage-independent calcium channels is not yet fully elucidated, there are growing evidences that these channels correspond to a new family of membrane proteins encoded by mammalian homologues of specific transient receptor potential (TRP) genes. Several types of TRP proteins are ubiquitously expressed in smooth muscle cells and variations in the expression depend on tissue and species. More recently, other proteins such as Orai1 and STIM1 proteins have been also proposed as participating in the molecular identity of voltage-independent calcium channels. These channels control phenomena such as smooth muscle cells proliferation and/or contraction.  相似文献   

4.
Dihydropyridine sensitive calcium channels in a smooth muscle cell line   总被引:1,自引:0,他引:1  
The pharmacological properties of voltage sensitive calcium channels (VSCC) were examined in a rat aortic smooth muscle cell line (A10). The inorganic VSCC blockers Co2+ and Cd2+ blocked 45Ca2+ uptake into these cells in both 5 mM K+ and 50 mM K+ (depolarizing) conditions. The organic VSCC antagonists nitrendipine, nimodipine, D-600 and diltiazem also blocked 45Ca2+ uptake at low concentrations. The relative potencies of blockade were similar to those found in intact vascular smooth muscle. The VSCC "agonist" BAY K8644 enhanced 45Ca2+ uptake and this effect could be reversed by nitrendipine. These results indicate that A10 cells possess VSCC and that these VSCC behave similarly to those in authentic smooth muscle.  相似文献   

5.
Plasma membrane Ca2+ leak remains the most uncertain of the cellular Ca2+ regulation pathways. During passive Ca2+ influx in non-stimulated smooth muscle cells, basal activity of constitutive Ca2+ channels seems to be involved. In vascular smooth muscle, the 3 following Ca2+ entry pathways contribute to this phenomenon: (i) via voltage-dependent Ca2+ channels, (ii) receptor gated Ca2+ channels, and (iii) store operated Ca2+ channels, although, in airway smooth muscle it seems only 2 passive Ca2+ influx pathways are implicated, one sensitive to SKF 96365 (receptor gated Ca2+ channels) and the other to Ni2+ (store operated Ca2+ channels). Resting Ca2+ entry could provide a sufficient amount of Ca2+ and contribute to resting intracellular Ca2+ concentration ([Ca2+]i), maintenance of the resting membrane potential, myogenic tone, and sarcoplasmic reticulum-Ca2+ refilling. However, further research, especially in airway smooth muscle, is required to better explore the physiological role of this passive Ca2+ influx pathway as it could be involved in airway hyperresponsiveness.  相似文献   

6.
The BC3H1 nonfusing muscle cell line possesses binding sites for [3H]prazosin. These binding sites are typically alpha 1 adrenergic receptors as shown by their greater affinity (3700-fold) for prazosin than for yohimbine. Both kinetic and equilibrium analyses indicated that [3H]prazosin interacted with only one category of independent binding sites with the following characteristics. KD = 0.13 +/- 0.01 nM. Bmax = 97 +/- 5 fmol/mg of protein corresponding to 25,000 sites/cell (n = 17). Biosynthesis of the alpha 1 adrenergic receptor was investigated at cell confluency (when the number of cells and their total protein content were constant). Phenoxybenzamine (10(-9) M) irreversibly blocked 50% of the alpha 1 receptors in intact cells. More than 95% blockade of receptors was obtained with 10(-7) M phenoxybenzamine. After this blockade, new alpha 1 adrenergic receptors reappeared in the cells with monoexponential kinetics. These new receptors corresponded to synthesized receptors since their appearance was blocked by cycloheximide (1 micrograms/ml). The cycloheximide action was reversible. If one makes the simple and probable hypotheses that the receptor production is constant and that degradation is a monoexponential process, the analysis of the kinetics of reappearance allows the determination of the rate constant for receptor degradation (k = 0.03 h-1) and the rate of receptor production (r = 3.2 fmol/mg/h) corresponding to the synthesis of about 760 receptors/cell/h. The half-life of the receptor was 23 h.  相似文献   

7.
Cultured cells of the smooth muscle line DDT1MF-2, which was derived from a hamster vas deferens tumor, expressed histamine H1-type receptors and responded biochemically and functionally to H1-specific stimulation. The H1-receptor antagonist [3H]-pyrilamine bound specifically to 9.7 x 10(6) sites/DDT1MF-2 cell with a dissociation constant (Kd) of 219 nM. The addition of histamine to suspensions of fura-2-loaded DDT1MF-2 cells elicited a rapid, transient, and stimulus concentration-dependent increase in the intracellular concentration of Ca2+ with an EC50 of 3 x 10(-5) M, which demonstrated H1 receptor specificity. Moreover, in order to evaluate in vitro contractile response of individual DDT1MF-2 cells, the degree of intracellular actin polymerization was quantified by a DNase inhibition assay. The percentage of nonpolymerized or G-actin in DDT1MF-2 cells was reduced in a histamine concentration-dependent manner with an EC50 of 1 x 10(-5) M and H1 receptor specificity. Histamine-induced actin polymerization was accompanied by changes in cell shape that were consistent with cellular contraction, as assessed by flow cytometry. The H1-type receptors of cultured DDT1MF-2 cells thus couple histamine stimulation to a variety of functional responses of smooth muscle cells.  相似文献   

8.
We have simultaneously quantitated alpha 1-adrenergic receptor occupation and agonist-elicited Ca2+ mobilization monitored as unidirectional 45Ca2+ efflux from intact BC3H-1 muscle cells in order to examine the relationship between the number of surface receptors occupied and the functional response. [3H]Prazosin has been used to measure receptor number as well as the binding kinetics with surface receptors, and the observed equilibrium and kinetic constants are in close accord with values obtained previously in cellular homogenates. Since alpha 1-agonist-elicited 45Ca2+ efflux can be monitored over intervals of 3 min or less and prazosin dissociation from its receptor has a t 1/2 of 44 min, prazosin can be employed to produce a pseudoirreversible inactivation of receptors. A comparison of the remaining receptors and residual response reveals an inverse linear relationship between receptors inactivated by prazosin and 45Ca2+ efflux. A similar result is obtained following fractional receptor inactivation with the irreversible alkylating agent phenoxybenzamine. Parameters of receptor occupation and response also correlate well for the agonist phenylephrine and for the competitive antagonist phentolamine. The unitary relationship between sites available for occupation and response indicates that the alpha 1 receptor does not function as an oligomer where fewer bound antagonist molecules are required to block the receptor than sites of agonist occupation necessary for activation. Moreover, substantial evidence has accrued in intact smooth muscle for a receptor reserve or nonlinear coupling between alpha 1 receptor occupation and contraction in smooth muscle. Our findings demonstrate that such behavior does not exist for alpha 1 receptor-elicited mobilization of Ca2+ in the BC3H-1 muscle cell.  相似文献   

9.
Vasopressin-induced phosphatidylinositol turnover and mobilization of intracellular Ca2+ was studied using an established smooth muscle cell line (A-10). The cells were subcloned to ensure a monoclonal cell population. The accumulation of inositol mono-, di-, and tris-phosphates (IP1, IP2, and IP3, respectively), and the mobilization of intracellular Ca2+ were dependent on the time of incubation and the concentration of arginine vasopressin (AVP). IP1, IP2, and IP3 were significantly elevated after 15 sec and remained elevated for up to 2 hr. The concentrations of AVP required for half-maximal stimulation of IP1, IP2, and IP3 formation were 2, 12, and 4 nM, respectively. LiCl was required to observe the accumulation of inositol phosphates in response to AVP. Significant 45Ca2+ efflux was observed within 15 sec after exposure to AVP. By employing the vasopressin receptor subtype selective antagonists [d(CH2)5Tyr(Me)AVP, V1; d(CH2)5D-Tyr(Et)VAVP,V1/V2; d(CH2) 5D-IleVAVP,V2] and agonists [AVP, V1/V2; dDAVP, V2; dVDAVP, V2], we found that the vasopressin-induced stimulation of phosphatidylinositol turnover and 45Ca2+ efflux were mediated by receptors of the vascular V1 subtype. Pertussis toxin pretreatment partially inhibited vasopressin-induced phosphatidylinositol turnover. These data demonstrate that activation of V1 receptors of vascular smooth muscle cells resulted in enhanced phosphatidylinositol turnover and mobilization of intracellular Ca2+.  相似文献   

10.
Bis-diphosphoinositol tetrakisphosphate ([PP]2-InsP4 or 'InsP8') is a 'high-energy' inositol phosphate; we report that its metabolism is receptor-regulated in DDT1 MF-2 smooth muscle cells. This conclusion arose by pursuing the mechanism by which F- decreased cellular levels of [PP]2-InsP4 up to 70%. A similar effect was induced by elevating cyclic nucleotide levels, either with IBMX or by application of either Bt2cAMP (EC50 = 14.7 microM), Bt2cGMP (EC50 = 7.9 microM) or isoproterenol (EC50 = 0.4 nM). Isoproterenol (1 microM) decreased [PP]2-InsP4 levels 25% by 5 min, and 71% by 60 min. This novel, agonist-mediated regulation of [PP]2-InsP4 turnover was very specific; isoproterenol did not decrease the cellular levels of either inositol pentakisphosphate, inositol hexakisphosphate or other diphosphorylated inositol polyphosphates. Bradykinin, which activated phospholipase C, did not affect [PP]2-InsP4 levels. Regulation of [PP]2-InsP4 turnover by both isoproterenol and cell-permeant cyclic nucleotides was unaffected by inhibitors of protein kinases A and G. The effectiveness of the kinase inhibitors was confirmed by their ability to block phosphorylation of the cAMP response element-binding protein. Our results indicate a new signaling action of cAMP, and furnish an important focus for future research into the roles of diphosphorylated inositol phosphates in signal transduction.  相似文献   

11.
M Mitsuhashi  D G Payan 《Life sciences》1988,43(18):1433-1440
The present study was undertaken in order to examine the effect of protein kinase C (PKC) on histamine H1 receptors (H1R) present on the smooth muscle cell line, DDT1MF-2. [3H]-pyrilamine binding revealed that specific [3H]-pyrilamine binding sites were reduced by pretreatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, but not the Kd. The TPA analogue, 4 alpha phorbol 12,13-didecanoate, which does not activate PKC, failed to induce down-regulation of H1R. TPA-induced down-regulation of H1R was inhibited by pretreatment with 1-(5-Isoquinilinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, in a dose dependent manner. The H-7 analogue, H-8, which is a less potent inhibitor of PKC, but a potent inhibitor of cyclic nucleotide dependent protein kinase, had no effect on H1R. Moreover, treatment with TPA inhibited histamine-induced increases in [Ca2+]i in cells loaded with the fluorescent indicator, indo-1. These data suggest that H1R in DDT1MF-2 cells are functionally regulated by PKC.  相似文献   

12.
High efficiency transient transfection of Cos-7 cells was previously used to establish the functional coupling between G alpha q/G alpha 11 and phospholipase C beta 1 (Wu, D., Lee, C-H., Rhee, S. G., and Simon, M. I. (1992) J. Biol. Chem. 267, 1811-1817). Here the same system was used to study the functional coupling between other guanine nucleotide-binding regulatory protein (G-protein) alpha subunits and phospholipases and to study which G alpha subunits mediate the activation of phospholipase C by the alpha 1-adrenergic receptor subtypes, alpha 1 A, alpha 1 B, and alpha 1 C. We found that G alpha 14 and G alpha 16 behaved like G alpha 11 or G alpha q, i.e. they could activate endogenous phospholipases in Cos-7 cells in the presence of AIFn. The synergistic increase in inositol phosphate release in Cos-7 cells after they were cotransfected with cDNAs encoding G alpha subunits and phospholipase C beta 1 indicates that both G alpha 16 and G alpha 14 can activate phospholipase C beta 1. The activation of phospholipase C beta 1 was restricted to members of the Gq subfamily of alpha subunits. They activated phospholipase C beta 1 but not phospholipase C gamma 1, gamma 2, or phospholipase C delta 3. The cotransfection of Cos-7 cells with cDNAs encoding three different alpha 1-adrenergic receptors and G alpha q or G alpha 11 leads to an increase in norepinephrine-dependent inositol phosphate release. This indicates that G alpha q or G alpha 11 can mediate the activation of phospholipase C by all three subtypes of alpha 1-adrenergic receptors. With the same assay system, G alpha 16 and G alpha 14 appear to be differentially involved in the activation of phospholipase C by the alpha 1-adrenergic receptors. The alpha 1 B subtype receptor gave a ligand-mediated synergistic response in the cells cotransfected with either G alpha 14 or G alpha 16. However, the alpha 1 C receptor responded in cells cotransfected with G alpha 14 but not G alpha 16, and the alpha 1 A receptor showed little synergistic response in cells transfected with either G alpha 14 or G alpha 16. The ability of the alpha 1 A and alpha 1 C receptors to activate phospholipase C through G alpha q and G alpha 11 was also demonstrated in a cell-free system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Stimulation of DDT1 MF-2 vas deferens cells with epinephrine resulted in a time- and dose-dependent loss of alpha 1-adrenergic receptor-specific ligand binding. Regulation of alpha 1-adrenergic receptor mRNA was characterized. In monolayer culture, cells displayed 0.7 +/- 0.05 amol of alpha 1-adrenergic receptor mRNA/microgram of total cellular RNA. Epinephrine, which acts at both alpha 1- and beta 2-adrenergic receptors of DDT1 MF-2 cells, induced a short term (2-8 h) increase (50-70%) in the abundance of alpha 1-adrenergic receptor mRNA. Propranolol, a beta 2-adrenergic receptor antagonist, attenuated the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA but did not affect the decrease in alpha 1-adrenergic receptor-specific ligand binding. Phentolamine, an alpha 1-adrenergic receptor antagonist, did not attenuate the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA at 4 h but did block the decrease in alpha 1-adrenergic receptor-specific ligand binding. The half-life of the alpha 1-adrenergic receptor mRNA was approximately 7 h in untreated cells as well as in cells challenged with epinephrine. The epinephrine-promoted increase in alpha 1-adrenergic receptor mRNA was found to result from cross-regulation via beta 2-adrenergic receptors. Cholera toxin, forskolin, as well as the cyclic AMP analog CPT cAMP (8-(4-chlorophenylthio)adenosine 3':5'-cyclic monophosphate) increased the alpha 1-adrenergic receptor mRNA at 4 h, as did epinephrine in the presence of alpha 1-antagonists but not in the presence of a beta-adrenergic antagonist. This is the first report of heterologous up-regulation of mRNA levels of adrenergic receptors. Cross-regulation between alpha 1- and beta 2-adrenergic receptor-mediated pathways at 4 h occurs at the level of mRNA whereas later down-regulation of alpha 1-receptor mRNA and binding proceed via agonist activation of alpha 1-adrenergic receptors.  相似文献   

14.
15.
The mechanisms by which endothelin-1 (ET-1) and endothelin-3 (ET-3) stimulate Ca2+ mobilization were investigated in rat aortic smooth muscle cells. Both ET-1 and ET-3 potently stimulated mobilization of Ca2+ from intracellular stores, however only ET-1-stimulated Ca2+ mobilization appeared to occur as a consequence of an elevation in cellular inositol trisphosphate (IP3) concentration. Neomycin, an inhibitor of phospholipase C, inhibited both the increase in [3H]IP3 formation and the mobilization of Ca2+ induced by ET-1, however it did not affect Ca2+ mobilization induced by ET-3. Together these findings indicate that ET-1 stimulates Ca2+ mobilization via an increase in IP3, whereas the effect of ET-3 appears to be mediated by a separate, IP3-independent signalling pathway.  相似文献   

16.
A previous study suggested the existence of two distinct postsynaptic alpha adrenergic receptors in canine intralobar pulmonary arteries (IPA) and veins. The present study, performed using rings of canine IPA and dorsal metatarsal vein (DMV), was designed to characterize the factors affecting the postsynaptic alpha 1 and alpha 2 receptors of these blood vessels. The responses of IPA and DMV to norepinephrine (NE), transmural nerve stimulation, phenylephrine (PE), guanabenz, and clonidine were obtained in the presence and absence of alterations in pH, extracellular calcium ion, sulfhydryl bond reduction and oxidation, and destruction of adrenergic nerves with 6-hydroxydopamine. The data demonstrate that: (i) alpha 2-receptors are inactivated by changes in pH above or below pH 7.4, contain a labile disulfide group, are susceptible to modulation by increases and decreases in calcium ion, and appear to be decreased by destruction of adrenergic nerves; (ii) the NE and PE sensitive alpha 1-receptors are insensitive to alterations in pH, refractory to disulfide reduction by dithiothreitol, slightly susceptible to modulation by calcium ion, and increased by destruction of adrenergic nerves. These data support the conclusion that the two subtypes of postsynaptic alpha adrenergic receptors differ in their properties and susceptibility to modification by alteration of the physiological environment.  相似文献   

17.
Techniques to dissociate different sites or stores important for Ca2+ entry or release in smooth muscle include washouts of 45Ca in cold La3+ -substituted solutions. Scatchard-coordinate plots of Ca2+ uptake, substitution of Sr2+ for Ca2+, and both desaturation and rate coefficient plots. Rabbit aortic smooth muscle is particularly useful because Ca2+ mobilization components can be clearly separated. Other vascular preparations investigated (e.g., renal vessels, coronary arteries) appear to have similar components, but their relative importance varies. Respiratory smooth muscle also has similar Ca2+ mobilization components, but they are less readily dissociated by techniques employed in vascular smooth muscles. In guinea pig trachea, cold La3+ washouts do not retain cellular Ca2+ as well as in other preparations: use of other experimental approaches including the Ca2+ channel entry stimulator, CGP 28392, can demonstrate different Ca2+ uptake mechanisms for K+ -stimulated and agonist-induced Ca2+ uptake. In rabbit aorta, CGP 28392 potentiates tension increases elicited with lower concentrations of added K+ but has no effect on norepinephrine-induced contraction. A general model illustrating different Ca2+ entry mechanisms present in three types of smooth muscle provides examples drawn from a spectrum of possible variations in smooth muscle specificity for Ca2+ mobilization.  相似文献   

18.
Phosphatidylinositol metabolism and 45Ca2+ efflux were examined in a vascular smooth muscle cell line (A7r5). [Arg8]Vasopressin stimulated the rapid formation (measurable at 1 sec) of inositol phosphates in a concentration-dependent manner. The time course for formation of inositol phosphates was similar to that for 45Ca2+ efflux from preloaded cells. The efflux of 45Ca2+ in response to [Arg8]vasopressin could be inhibited by a vasopressin antagonist. This supports the hypothesis that inositol 1,4,5-trisphosphate plays a role in vasopressin stimulated calcium mobilisation from an intracellular source in cultured vascular smooth muscle cells.  相似文献   

19.
20.
Conflicting evidence has been reported regarding the role of endothelin-1, a potent vasconstrictor peptide, in stimulating extracellular calcium influx in rabbit vascular smooth muscle. The objective of this study was to elucidate the effects of endothelin-1 on transmembrane 45Ca2+ influx and intracellular calcium mobilization in cultured rabbit aortic smooth muscle cells. In calcium containing buffer, endothelin-1 induced a concentration-dependent 45Ca2+ efflux response over the range of 10 pM to 100 nM with an EC50 of approximately 60 pM. Maximum endothelin-stimulated 45Ca2+ efflux was not affected by the absence of extracellular calcium or the presence of 1 microM verapamil. Endothelin-1 did not induce transplasmalemmal 45Ca2+ uptake at times up to 30 min. These findings suggest that an alteration in intracellular calcium handling, rather than extracellular calcium influx, is responsible for the endothelin-stimulated increase in intracellular calcium concentration in rabbit aortic smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号