首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Phospholemman (PLM) expression was increased in rat hearts after myocardial infarction (MI). Overexpression of PLM in normal adult rat cardiac myocytes altered contractile function and cytosolic Ca(2+) concentration ([Ca(2+)](i)) homeostasis in a manner similar to that observed in post-MI myocytes. In this study, we tested whether PLM downregulation in normal adult rat myocytes resulted in contractility and [Ca(2+)](i) transient changes opposite to those observed in post-MI myocytes. Compared with control myocytes infected with adenovirus (Adv) expressing green fluorescent protein (GFP) alone, myocytes infected with Adv expressing both GFP and rat antisense PLM (rASPLM) had 23% less PLM protein (P < 0.012) at 3 days, but no differences were found in sarcoplasmic reticulum (SR) Ca(2+)-ATPase, Na(+)/Ca(2+) exchanger (NCX1), Na(+)-K(+)-ATPase, and calsequestrin levels. SR Ca(2+) uptake and whole cell capacitance were not affected by rASPLM treatment. Relaxation from caffeine-induced contracture was faster, and NCX1 current amplitudes were higher in rASPLM myocytes, indicating that PLM downregulation enhanced NCX1 activity. In native rat cardiac myocytes, coimmunoprecipitation experiments indicated an association of PLM with NCX1. At 0.6 mM [Ca(2+)](o), rASPLM myocytes had significantly (P < 0.003) lower contraction and [Ca(2+)](i) transient amplitudes than control GFP myocytes. At 5 mM [Ca(2+)](o), both contraction and [Ca(2+)](i) transient amplitudes were higher in rASPLM myocytes. This pattern of contractile and [Ca(2+)](i) transient behavior in rASPLM myocytes was opposite to that observed in post-MI rat myocytes. We conclude that downregulation of PLM in normal rat cardiac myocytes enhanced NCX1 function and affected [Ca(2+)](i) transient and contraction amplitudes. We suggest that PLM downregulation offers a potential therapeutic strategy for ameliorating contractile abnormalities in MI myocytes.  相似文献   

2.
Postmyocardial infarction (MI) rat myocytes demonstrated depressed Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. We investigated whether NCX1 downregulation in normal myocytes resulted in contractility changes observed in MI myocytes. Myocytes infected with adenovirus expressing antisense (AS) oligonucleotides to NCX1 had 30% less NCX1 at 3 days and 66% less NCX1 at 6 days. The half-time of relaxation from caffeine-induced contracture was twice as long in ASNCX1 myocytes. Sarcoplasmic reticulum (SR) Ca(2+)-ATPase abundance, SR Ca(2+) uptake, resting membrane potential, action potential amplitude and duration, L-type Ca(2+) current density and cell size were not affected by ASNCX1 treatment. At extracellular Ca(2+) concentration ([Ca(2+)](o)) of 5 mM, ASNCX1 myocytes had significantly lower contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents than control myocytes. At 0.6 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents were significantly higher in ASNCX1 myocytes. At 1.8 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes were not different between control and ASNCX1 myocytes. This pattern of contractile and [Ca(2+)](i) transient abnormalities in ASNCX1 myocytes mimics that observed in rat MI myocytes. We conclude that downregulation of NCX1 in adult rat myocytes resulted in decreases in both Ca(2+) influx and efflux during a twitch. We suggest that depressed NCX1 activity may partly account for the contractile abnormalities after MI.  相似文献   

3.
Previous studies on myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) demonstrated increased cell length, reduced Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. In the present study, we investigated whether NCX1 overexpression in MI myocytes would restore contraction and [Ca(2+)](i) transients to normal. When myocytes were placed in culture under continued electrical-field stimulation conditions, differences in contraction amplitudes and cell lengths between sham and MI myocytes were preserved for at least 48 h. Infection of both sham and MI myocytes by adenovirus expressing green fluorescent protein resulted in >95% infection, as evidenced by green fluorescent protein fluorescence, but contraction amplitudes at 6-, 24-, and 48-h postinfection were not affected. NCX1 overexpression in MI myocytes resulted in lower diastolic [Ca(2+)](i) levels at all extracellular Ca(2+) concentrations ([Ca(2+)](o)) examined, suggesting enhanced forward NCX1 activity. At 5 mM [Ca(2+)](o), subnormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were restored toward normal levels by overexpressing NCX1. At 0.6 mM [Ca(2+)](o), supranormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were lowered by NCX1 overexpression. We conclude that overexpression of NCX1 in MI myocytes was effective in improving contractile dysfunction, most likely because of enhancement of both Ca(2+) efflux and influx during a cardiac cycle. We suggest that decreased NCX1 activity may play an important role in contractile abnormalities in postinfarction myocytes.  相似文献   

4.
Phospholemman (PLM) regulates contractility and Ca(2+) homeostasis in cardiac myocytes. We characterized excitation-contraction coupling in myocytes isolated from PLM-deficient mice backbred to a pure congenic C57BL/6 background. Cell length, cell width, and whole cell capacitance were not different between wild-type and PLM-null myocytes. Compared with wild-type myocytes, Western blots indicated total absence of PLM but no changes in Na(+)/Ca(2+) exchanger, sarcoplasmic reticulum (SR) Ca(2+)-ATPase, alpha(1)-subunit of Na(+)-K(+)-ATPase, and calsequestrin levels in PLM-null myocytes. At 5 mM extracellular Ca(2+) concentration ([Ca(2+)](o)), contraction and cytosolic [Ca(2+)] ([Ca(2+)](i)) transient amplitudes and SR Ca(2+) contents in PLM-null myocytes were significantly (P < 0.0004) higher than wild-type myocytes, whereas the converse was true at 0.6 mM [Ca(2+)](o). This pattern of contractile and [Ca(2+)](i) transient abnormalities in PLM-null myocytes mimics that observed in adult rat myocytes overexpressing the cardiac Na(+)/Ca(2+) exchanger. Indeed, we have previously reported that Na(+)/Ca(2+) exchange currents were higher in PLM-null myocytes. Activation of protein kinase A resulted in increased inotropy such that there were no longer any contractility differences between the stimulated wild-type and PLM-null myocytes. Protein kinase C stimulation resulted in decreased contractility in both wild-type and PLM-null myocytes. Resting membrane potential and action potential amplitudes were similar, but action potential duration was much prolonged (P < 0.04) in PLM-null myocytes. Whole cell Ca(2+) current densities were similar between wild-type and PLM-null myocytes, as were the fast- and slow-inactivation time constants. We conclude that a major function of PLM is regulation of cardiac contractility and Ca(2+) fluxes, likely by modulating Na(+)/Ca(2+) exchange activity.  相似文献   

5.
Previous studies have shown that overexpression of phospholemman (PLM) affected contractile function and Ca(2+) homeostasis in adult rat myocytes. We tested the hypothesis that PLM modulated Na(+)/Ca(2+) exchanger (NCX1) activity. PLM was overexpressed in adult rat myocytes by adenovirus-mediated gene transfer. After 72 h, the half-time of relaxation from caffeine-induced contracture, an estimate of forward NCX1 activity, was prolonged 1.8-fold (P < 0.003) in myocytes overexpressing PLM compared with control myocytes overexpressing green fluorescent protein alone. Reverse NCX1 current (3 Na(+) out:1 Ca(2+) in) was significantly (P < 0.0001) lower in PLM myocytes, especially at more positive voltages. Immunofluorescence demonstrated colocalization of PLM and NCX1 to the plasma membrane and t-tubules. Resting membrane potential, action potential amplitude and duration, myocyte size, and NCX1 and calsequestrin protein levels were not affected by PLM overexpression. At 5 mM extracellular [Ca(2+)] ([Ca(2+)](o)), the depressed contraction amplitudes in PLM myocytes were increased towards normal by cooverexpression with NCX1. At 0.6 mM [Ca(2+)](o), the supranormal contraction amplitudes in PLM myocytes were reduced by cooverexpression with NCX1. We conclude that PLM modulated myocyte contractility partly by inhibiting Na(+)/Ca(2+) exchange.  相似文献   

6.
Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct inhibitory effects on Na(+)/Ca(2+) exchange.  相似文献   

7.
The effects of 6-8 wk of high-intensity sprint training (HIST) on rat myocyte contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients were investigated. Compared with sedentary (Sed) myocytes, HIST induced a modest (5%) but significant (P < 0.0005) increase in cell length with no changes in cell width. In addition, the percentage of myosin heavy chain alpha-isoenzyme increased significantly (P < 0.02) from 0.566 +/- 0.077% in Sed rats to 0.871 +/- 0.006% in HIST rats. At all three (0.6, 1.8, and 5 mM) extracellular Ca(2+) concentrations ([Ca(2+)](o)) examined, maximal shortening amplitudes and maximal shortening velocities were significantly (P < 0.0001) lower and half-times of relaxation were significantly (P < 0.005) longer in HIST myocytes. HIST myocytes had significantly (P < 0.0001) higher diastolic [Ca(2+)](i) levels. Compared with Sed myocytes, systolic [Ca(2+)](i) levels in HIST myocytes were higher at 0.6 mM [Ca(2+)](o), similar at 1.8 mM [Ca(2+)](o), and lower at 5 mM [Ca(2+)](o). The amplitudes of [Ca(2+)](i) transients were significantly (P < 0.0001) lower in HIST myocytes. Half-times of [Ca(2+)](i) transient decline, an estimate of sarcoplasmic reticulum (SR) Ca(2+) uptake activity, were not different between Sed and HIST myocytes. Compared with Sed hearts, Western blots demonstrated a significant (P < 0.03) threefold decrease in Na(+)/Ca(2+) exchanger, but SR Ca(2+)-ATPase and calsequestrin protein levels were unchanged in HIST hearts. We conclude that HIST effected diminished myocyte contractile function and [Ca(2+)](i) transient amplitudes under the conditions studied. We speculate that downregulation of Na(+)/Ca(2+) exchanger may partly account for the decreased contractility in HIST myocytes.  相似文献   

8.
The functional consequences of overexpression of rat heart Na+/Ca2+ exchanger (NCX1) were investigated in adult rat myocytes in primary culture. When maintained under continued electrical field stimulation conditions, cultured adult rat myocytes retained normal contractile function compared with freshly isolated myocytes for at least 48 h. Infection of myocytes by adenovirus expressing green fluorescent protein (GFP) resulted in >95% infection as ascertained by GFP fluorescence, but contraction amplitude at 6-, 24-, and 48-h postinfection was not affected. When they were examined 48 h after infection, myocytes infected by adenovirus expressing both GFP and NCX1 had similar cell sizes but exhibited significantly altered contraction amplitudes and intracellular Ca2+ concentration ([Ca2+]i) transients, and lower resting and diastolic [Ca2+]i when compared with myocytes infected by the adenovirus expressing GFP alone. The effects of NCX1 overexpression on sarcoplasmic reticulum (SR) Ca2+ content depended on extracellular Ca2+ concentration ([Ca2+]o), with a decrease at low [Ca2+]o and an increase at high [Ca2+]o. The half-times for [Ca2+]i transient decline were similar, suggesting little to no changes in SR Ca2+-ATPase activity. Western blots demonstrated a significant (P < or = 0.02) threefold increase in NCX1 but no changes in SR Ca2+-ATPase and calsequestrin abundance in myocytes 48 h after infection by adenovirus expressing both GFP and NCX1 compared with those infected by adenovirus expressing GFP alone. We conclude that overexpression of NCX1 in adult rat myocytes incubated at high [Ca2+]o resulted in enhanced Ca2+ influx via reverse NCX1 function, as evidenced by greater SR Ca2+ content, larger twitch, and [Ca2+]i transient amplitudes. Forward NCX1 function was also increased, as indicated by lower resting and diastolic [Ca2+]i.  相似文献   

9.
Previous studies in adult myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) demonstrated abnormal contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) homeostasis and decreased sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2) expression and activity, but sarcoplasmic reticulum Ca(2+) leak was unchanged. In the present study, we investigated whether SERCA2 overexpression in MI myocytes would restore contraction and [Ca(2+)](i) transients to normal. Compared with sham-operated hearts, 3-wk MI hearts exhibited significantly higher left ventricular end-diastolic and end-systolic volumes but lower fractional shortening and ejection fraction, as measured by M-mode echocardiography. Seventy-two hours after adenovirus-mediated gene transfer, SERCA2 overexpression in 3-wk MI myocytes did not affect Na(+)-Ca(2+) exchanger expression but restored the depressed SERCA2 levels toward those measured in sham myocytes. In addition, the reduced sarcoplasmic reticulum Ca(2+) uptake in MI myocytes was improved to normal levels by SERCA2 overexpression. At extracellular Ca(2+) concentration of 5 mM, the subnormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were restored to normal by SERCA2 overexpression. However, at 0.6 mM extracellular Ca(2+) concentration, the supernormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were exacerbated by SERCA2 overexpression. We conclude that SERCA2 overexpression was only partially effective in ameliorating contraction and [Ca(2+)](i) transient abnormalities in our rat model of ischemic cardiomyopathy. We suggest that other Ca(2+) transport pathways, e.g., Na(+)-Ca(2+) exchanger, may also play an important role in contractile and [Ca(2+)](i) homeostatic abnormalities in MI myocytes.  相似文献   

10.
In hearts, intracellular acidosis disturbs contractile performance by decreasing myofibrillar Ca(2+) response, but contraction recovers at prolonged acidosis. We examined the mechanism and physiological implication of the contractile recovery during acidosis in rat ventricular myocytes. During the initial 4 min of acidosis, the twitch cell shortening decreased from 2.3 +/- 0.3% of diastolic length to 0.2 +/- 0.1% (means +/- SE, P < 0.05, n = 14), but in nine of these cells, contractile function spontaneously recovered to 1.5 +/- 0.3% at 10 min (P < 0.05 vs. that at 4 min). During the depression phase, both the diastolic intracellular Ca(2+) concentration ([Ca(2+)](i)) and Ca(2+) transient (CaT) amplitude increased, and the twitch [Ca(2+)](i) decline prolonged significantly (P < 0.05). In the cells that recovered, a further increase in CaT amplitude and a reacceleration of twitch [Ca(2+)](i) decline were observed. The increase in diastolic [Ca(2+)](i) was less extensive than the increase in the cells that did not recover (n = 5). Blockade of sarcoplasmic reticulum (SR) function by ryanodine (10 microM) and thapsigargin (1 microM) or a selective inhibitor of Ca(2+)-calmodulin kinase II, 2-[N- (2-hydroxyethyl)-N-(4-methoxybenzenesulfonyl)] amino-N-(4-chlorocinnamyl)-N-methyl benzylamine (1 microM) completely abolished the reacceleration of twitch [Ca(2+)](i) decline and almost eliminated the contractile recovery. We concluded that during prolonged acidosis, Ca(2+)-calmodulin kinase II-dependent reactivation of SR Ca(2+) uptake could increase SR Ca(2+) content and CaT amplitude. This recovery can compensate for the decreased myofibrillar Ca(2+) response, but may also cause Ca(2+) overload after returning to physiological pH(i).  相似文献   

11.
The significance of 6-8 wk of high-intensity sprint training (HIST) on contractile abnormalities of myocytes isolated from rat hearts with prior myocardial infarction (MI) was investigated. Compared with the sedentary (Sed) condition, HIST attenuated myocyte hypertrophy observed post-MI primarily by reducing cell lengths but not cell widths. At high extracellular Ca(2+) concentration (5 mM) and low pacing frequency (0.1 Hz), conditions that preferentially favored Ca(2+) influx over efflux, MI-Sed myocytes shortened less than Sham-Sed myocytes did. HIST significantly improved contraction amplitudes in MI myocytes. Under conditions that favored Ca(2+) efflux, i.e., low extracellular Ca(2+) concentration (0.6 mM) and high pacing frequency (2 Hz), MI-Sed myocytes contracted more than Sham-Sed myocytes. HIST did not appreciably affect contraction amplitudes of MI myocytes under these conditions. Compared with MI-Sed myocytes, HIST myocytes showed significant improvement in time required to reach one-half maximal contraction amplitude shortening, maximal myocyte shortening and relengthening velocities, and half time of relaxation. Our results indicate that HIST instituted shortly after MI improved cellular contraction in surviving myocytes. Because our previous studies demonstrated that, in post-MI myocytes, HIST improved intracellular Ca(2+) dynamics, enhanced sarcoplasmic reticulum Ca(2+) uptake and Ca(2+) content, and restored Na(+)/Ca(2+) exchange current toward normal, we hypothesized that improvement in MI myocyte contractile function by HIST was likely mediated by normalization of cellular Ca(2+) homeostatic mechanisms.  相似文献   

12.
Phospholemman (PLM), when phosphorylated at serine 68, relieves its inhibition on Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger 1 (NCX1) in cardiac myocytes. Under stress when catecholamine levels are high, enhanced Na(+)-K(+)-ATPase activity by phosphorylated PLM attenuates intracellular Na(+) concentration ([Na(+)](i)) overload. To evaluate the effects of PLM on NCX1 on in vivo cardiac contractility, we injected recombinant adeno-associated virus (serotype 9) expressing either the phosphomimetic PLM S68E mutant or green fluorescent protein (GFP) directly into left ventricles (LVs) of PLM-knockout (KO) mice. Five weeks after virus injection, ~40% of isolated LV myocytes exhibited GFP fluorescence. Expression of S68E mutant was confirmed with PLM antibody. There were no differences in protein levels of α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase, NCX1, and sarco(endo)plasmic reticulum Ca(2+)-ATPase between KO-GFP and KO-S68E LV homogenates. Compared with KO-GFP myocytes, Na(+)/Ca(2+) exchange current was suppressed, but resting [Na(+)](i), Na(+)-K(+)-ATPase current, and action potential amplitudes were similar in KO-S68E myocytes. Resting membrane potential was slightly lower and action potential duration at 90% repolarization (APD(90)) was shortened in KO-S68E myocytes. Isoproterenol (Iso; 1 μM) increased APD(90) in both groups of myocytes. After Iso, [Na(+)](i) increased monotonically in paced (2 Hz) KO-GFP but reached a plateau in KO-S68E myocytes. Both systolic and diastolic [Ca(2+)](i) were higher in Iso-stimulated KO-S68E myocytes paced at 2 Hz. Echocardiography demonstrated similar resting heart rate, ejection fraction, and LV mass between KO-GFP and KO-S68E mice. In vivo closed-chest catheterization demonstrated enhanced contractility in KO-S68E compared with KO-GFP hearts stimulated with Iso. We conclude that under catecholamine stress when [Na(+)](i) is high, PLM minimizes [Na(+)](i) overload by relieving its inhibition of Na(+)-K(+)-ATPase and preserves inotropy by simultaneously inhibiting Na(+)/Ca(2+) exchanger.  相似文献   

13.
Previous studies have shown that myocytes isolated from sedentary (Sed) rat hearts 3 wk after myocardial infarction (MI) undergo hypertrophy, exhibit altered intracellular Ca(2+) concentration ([Ca(2+)](i)) dynamics and abnormal contraction, and impaired sarcoplasmic reticulum (SR) function manifested as prolonged half-time of [Ca(2+)](i) decline. Because exercise training elicits positive adaptations in cardiac contractile function and myocardial Ca(2+) regulation, the present study examined whether 6-8 wk of high-intensity sprint training (HIST) would restore [Ca(2+)](i) dynamics and SR function in MI myocytes toward normal. In MI rats, HIST ameliorated myocyte hypertrophy as indicated by significant (P 相似文献   

14.
Previous studies in adult myocytes isolated from rat hearts 3-9 wk after myocardial infarction (MI) demonstrated abnormal contractility and decreased Na(+)/Ca(2+) exchanger (NCX1) activity. In addition, a program of high-intensity sprint training (HIST) instituted shortly after MI restored both contractility and NCX1 activity toward normal. The present study examined the hypotheses that reduced NCX1 activity caused abnormal contractility in myocytes isolated from sedentary (Sed) rat hearts 9-11 wk after coronary artery ligation and that HIST ameliorated contractile dysfunction in post-MI myocytes by increasing NCX1 activity. The approach was to upregulate NCX1 in MI-sedentary (MISed) myocytes and downregulate NCX1 in MI-exercised (MIHIST) myocytes by adenovirus-mediated gene transfer. Overexpression of NCX1 in MISed myocytes did not affect sarco(endo)plasmic reticulum Ca(2+)-ATPase and calsequestrin levels but rescued contractile abnormalities observed in MISed myocytes. That is, at 5 mM extracellular Ca(2+) concentration, the subnormal contraction amplitude in MISed myocytes (compared with Sham myocytes) was increased toward normal by NCX1 overexpression, whereas at 0.6 mM extracellular Ca(2+) concentration the supernormal contraction amplitude in MISed myocytes was lowered. Conversely, NCX1 downregulation by antisense in MIHIST myocytes abolished the beneficial effects of HIST on contraction amplitudes in MI myocytes. We suggest that decreased NCX1 activity may play an important role in contractile abnormalities in post-MI myocytes and that HIST ameliorated contractile dysfunction in post-MI myocytes partly by enhancing NCX1 activity.  相似文献   

15.
The fluorescent Mg(2+) indicator furaptra (mag-fura-2) was introduced into single ventricular myocytes by incubation with its acetoxy-methyl ester form. The ratio of furaptra's fluorescence intensity at 382 and 350 nm was used to estimate the apparent cytoplasmic [Mg(2+)] ([Mg(2+)](i)). In Ca(2+)-free extracellular conditions (0.1 mM EGTA) at 25 degrees C, [Mg(2+)](i) averaged 0.842 +/- 0.019 mM. After the cells were loaded with Mg(2+) by exposure to high extracellular [Mg(2+)] ([Mg(2+)](o)), reduction of [Mg(2+)](o) to 1 mM (in the presence of extracellular Na(+)) induced a decrease in [Mg(2+)](i). The rate of decrease in [Mg(2+)](i) was higher at higher [Mg(2+)](i), whereas raising [Mg(2+)](o) slowed the decrease in [Mg(2+)](i) with 50% reduction of the rate at approximately 10 mM [Mg(2+)](o). Because a part of the furaptra molecules were likely trapped inside intracellular organelles, we assessed possible contribution of the indicator fluorescence emitted from the organelles. When the cell membranes of furaptra-loaded myocytes were permeabilized with saponin (25 microg/ml for 5 min), furaptra fluorescence intensity at 350-nm excitation decreased to 22%; thus approximately 78% of furaptra fluorescence appeared to represent cytoplasmic [Mg(2+)] ([Mg(2+)](c)), whereas the residual 22% likely represented [Mg(2+)] in organelles (primarily mitochondria as revealed by fluorescence imaging). [Mg(2+)] calibrated from the residual furaptra fluorescence ([Mg(2+)](r)) was 0.6-0.7 mM in bathing solution [Mg(2+)] (i.e., [Mg(2+)](c) of the skinned myocytes) of either 0.8 mM or 4.0 mM, suggesting that [Mg(2+)](r) was lower than and virtually insensitive to [Mg(2+)](c). We therefore corrected furaptra fluorescence signals measured in intact myocytes for this insensitive fraction of fluorescence to estimate [Mg(2+)](c). In addition, by utilizing concentration and dissociation constant values of known cytoplasmic Mg(2+) buffers, we calculated changes in total Mg concentration to obtain quantitative information on Mg(2+) flux across the cell membrane. The calculations indicate that, in the presence of extracellular Na(+), Mg(2+) efflux is markedly activated by [Mg(2+)](c) above the normal basal level (approximately 0.9 mM), with a half-maximal activation of approximately 1.9 mM [Mg(2+)](c). We conclude that [Mg(2+)](c) is tightly regulated by an Mg(2+) efflux that is dependent on extracellular [Na(+)].  相似文献   

16.
Immunological stimulation of rat mucosal-type mast cells (RBL-2H3 line) by clustering of their Fcepsilon receptors (FcepsilonRI) causes a rapid and transient increase in free cytoplasmic Ca(2+) ion concentration ([Ca(2+)](i)) because of its release from intracellular stores. This is followed by a sustained elevated [Ca(2+)](i), which is attained by Ca(2+) influx. Because an FcepsilonRI-induced increase in the membrane permeability for Na(+) ions has also been observed, and secretion is at least partially inhibited by lowering of extracellular sodium ion concentrations ([Na(+)](o)), the operation of a Na(+)/Ca(2+) exchanger has been considered. We found significant coupling between the Ca(2+) and Na(+) ion gradients across plasma membranes of RBL-2H3 cells, which we investigated employing (23)Na-NMR, (45)Ca(2+), (85)Sr(2+), and the Ca(2+)-sensitive fluorescent probe indo-1. The reduction in extracellular Ca(2+) concentrations ([Ca(2+)](o)) provoked a [Na(+)](i) increase, and a decrease in [Na(+)](o) results in a Ca(2+) influx as well as an increase in [Ca(2+)](i). Mediator secretion assays, monitoring the released beta-hexosaminidase activity, showed in the presence of extracellular sodium a sigmoidal dependence on [Ca(2+)](o). However, the secretion was not affected by varying [Ca(2+)](o) as [Na(+)](o) was lowered to 0.4 mM, while it was almost completely inhibited at [Na(+)](o) = 136 mM and [Ca(2+)](o) < 0.05 mM. Increasing [Na(+)](o) caused the secretion to reach a minimum at [Na(+)](o) = 20 mM, followed by a steady increase to its maximum value at 136 mM. A parallel [Na(+)](o) dependence of the Ca(2+) fluxes was observed: Antigen stimulation at [Na(+)](o) = 136 mM caused a pronounced Ca(2+) influx. At [Na(+)](o) = 17 mM only a slight Ca(2+) efflux was detected, whereas at [Na(+)](o) = 0.4 mM no Ca(2+) transport across the cell membrane could be observed. Our results clearly indicate that the [Na(+)](o) dependence of the secretory response to FcepsilonRI stimulation is due to its influence on the [Ca(2+)](i), which is mediated by a Na(+)-dependent Ca(2+) transport.  相似文献   

17.
Reduction of uterine perfusion pressure (RUPP) during late pregnancy has been suggested to trigger increases in renal vascular resistance and lead to hypertension of pregnancy. We investigated whether the increased renal vascular resistance associated with RUPP in late pregnancy reflects increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and contraction of renal arterial smooth muscle. Single smooth muscle cells were isolated from renal interlobular arteries of normal pregnant Sprague-Dawley rats and a rat model of RUPP during late pregnancy. The cells were loaded with fura 2 and both cell length and [Ca(2+)](i) were measured. In cells of normal pregnant rats incubated in Hanks' solution (1 mM Ca(2+)), ANG II (10(-7) M) caused an initial increase in [Ca(2+)](i) to 414 +/- 13 nM, a maintained increase to 149 +/- 8 nM, and 21 +/- 1% cell contraction. In RUPP rats, the initial ANG II-induced [Ca(2+)](i) (431 +/- 18 nM) was not different from pregnant rats, but both the maintained [Ca(2+)](i) (225 +/- 9 nM) and cell contraction (48 +/- 2%) were increased. Membrane depolarization by 51 mM KCl and the Ca(2+) channel agonist BAY K 8644 (10(-6) M), which stimulate Ca(2+) entry from the extracellular space, caused maintained increases in [Ca(2+)](i) and cell contraction that were greater in RUPP rats than control pregnant rats. In Ca(2+)-free (2 mM EGTA) Hanks' solution, the ANG II- and caffeine (10 mM)-induced [Ca(2+)](i) transient and cell contraction were not different between normal pregnant and RUPP rats, suggesting no difference in Ca(2+) release from the intracellular stores. The enhanced maintained ANG II-, KCl- and BAY K 8644-induced [Ca(2+)](i) and cell contraction in RUPP rats compared with normal pregnant rats suggest enhanced Ca(2+) entry mechanisms of smooth muscle contraction in resistance renal arteries and may explain the increased renal vascular resistance associated with hypertension of pregnancy.  相似文献   

18.
To investigate the phenomenon of Ca(2+) sensitization, we developed a new intact airway and arteriole smooth muscle cell (SMC) "model" by treating murine lung slices with ryanodine-receptor antagonist, ryanodine (50 microM), and caffeine (20 mM). A sustained elevation in intracellular Ca(2+) concentration ([Ca(2+)](i)) was induced in both SMC types by the ryanodine-caffeine treatment due to the depletion of internal Ca(2+) stores and the stimulation of a persistent influx of Ca(2+). Arterioles responded to this sustained increase in [Ca(2+)](i) with a sustained contraction. By contrast, airways responded to sustained high [Ca(2+)](i) with a transient contraction followed by relaxation. Subsequent exposure to methacholine (MCh) induced a sustained concentration-dependent contraction of the airway without a change in the [Ca(2+)](i). During sustained MCh-induced contraction, Y-27632 (a Rho-kinase inhibitor) and GF-109203X (a protein kinase C inhibitor) induced a concentration-dependent relaxation without changing the [Ca(2+)](i). The cAMP-elevating agents, forskolin (an adenylyl cyclase activator), IBMX (a phosphodiesterase inhibitor), and caffeine (also acting as a phosphodiesterase inhibitor), exerted similar relaxing effects. These results indicate that 1) ryanodine-caffeine treatment is a valuable tool for investigating the contractile mechanisms of SMCs while avoiding nonspecific effects due to cell permeabilization, 2) in the absence of agonist, sustained high [Ca(2+)](i) has a differential time-dependent effect on the Ca(2+) sensitivity of airway and arteriole SMCs, 3) MCh facilitates the contraction of airway SMCs by inducing Ca(2+) sensitization via the activation of Rho-kinase and protein kinase C, and 4) cAMP-elevating agents contribute to the relaxation of airway SMCs through Ca(2+) desensitization.  相似文献   

19.
Previous studies have shown lower systolic intracellular Ca(2+) concentrations ([Ca(2+)](i)) and reduced sarcoplasmic reticulum (SR)-releasable Ca(2+) contents in myocytes isolated from rat hearts 3 wk after moderate myocardial infarction (MI). Ca(2+) entry via L-type Ca(2+) channels was normal, but that via reverse Na(+)/Ca(2+) exchange was depressed in 3-wk MI myocytes. To elucidate mechanisms of reduced SR Ca(2+) contents in MI myocytes, we measured SR Ca(2+) uptake and SR Ca(2+) leak in situ, i.e., in intact cardiac myocytes. For sham and MI myocytes, we first demonstrated that caffeine application to release SR Ca(2+) and inhibit SR Ca(2+) uptake resulted in a 10-fold prolongation of half-time (t(1/2)) of [Ca(2+)](i) transient decline compared with that measured during a normal twitch. These observations indicate that early decline of the [Ca(2+)](i) transient during a twitch in rat myocytes was primarily mediated by SR Ca(2+)-ATPase and that the t(1/2) of [Ca(2+)](i) decline is a measure of SR Ca(2+) uptake in situ. At 5.0 mM extracellular Ca(2+), systolic [Ca(2+)](i) was significantly (P 相似文献   

20.
Desensitization of the beta-adrenergic receptor (beta-AR) response is well documented in hypertrophied hearts. We investigated whether beta-AR desensitization is also present at the cellular level in hypertrophied myocardium, as well as the physiological role of inhibitory G (G(i)) proteins and the L-type Ca(2+) channel in mediating beta-AR desensitization. Left ventricular (LV) myocytes were isolated from hypertrophied hearts of hypertensive Dahl salt-sensitive (DS) rats and nonhypertrophied hearts of normotensive salt-resistant (DR) rats. Cells were paced at a rate of 300 beats/min at 37 degrees C, and myocyte contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) were simultaneously measured. In response to increasing concentrations of isoproterenol, DR myocytes displayed a dose-dependent augmentation of cell shortening and the [Ca(2+)](i) transient amplitude, whereas hypertrophied DS myocytes had a blunted response of both cell shortening and the [Ca(2+)](i) transient amplitude. Interestingly, inhibition of G(i) proteins did not restore beta-AR desensitization in DS myocytes. The responses to increases in extracellular Ca(2+) and an L-type Ca(2+) channel agonist were also similar in both DS and DR myocytes. Isoproterenol-stimulated adenylyl cyclase activity, however, was blunted in hypertrophied myocytes. We concluded that compensated ventricular hypertrophy results in a blunted contractile response to beta-AR stimulation, which is present at the cellular level and independent of alterations in inhibitory G proteins and the L-type Ca(2+) channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号