首页 | 本学科首页   官方微博 | 高级检索  
     


Estrogen and bisphenol A disrupt spontaneous [Ca(2+)](i) oscillations in mouse oocytes
Authors:Mohri Tatsuma  Yoshida Shigeru
Affiliation:Division of Intracellular Metabolism, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan. tsmohri@nips.ac.jp
Abstract:The present work aims to study the effects of estrogen or endocrine disrupters (EDs) on the dynamic changes in intracellular Ca(2+) concentration of mouse immature oocytes (IOs) loaded with Ca(2+)-sensitive dye Fura-2 using an image analyzer. The majority of IOs isolated from the ovary exhibited spontaneous Ca(2+) oscillations at regular intervals. Entry of external Ca(2+), probably through gap junctions, contributes to Ca(2+) oscillations since they were reversibly inhibited by removing Ca(2+) from the bathing medium or by the application of a gap-junction inhibitor carbenoxolone (CBX, 30 microM). Both 17beta-estradiol (E2) and E2-BSA, a membrane impermeable estrogen, shortened the duration of Ca(2+) oscillations in a dose-dependent manner (1-1000 nM), and produced an irregular pattern of the oscillations, strongly suggesting that E2 acts on the plasma membrane of the oocyte. For bisphenol A (BPA), one of the estrogen-mimicking EDs, a 10,000-fold higher concentration (100 microM) was necessary to exert similar inhibitory action to that of E2.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号