首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allosteric proteins transition between ‘inactive’ and ‘active’ states. In general, such proteins assume distinct conformational states at the level of secondary, tertiary and/or quaternary structure. Different conformers of an allosteric protein can be antigenically dissimilar and induce antibodies with a highly distinctive specificities and neutralizing functional effects. Here we summarize studies on various functional types of monoclonal antibodies obtained against different allosteric conformers of the mannose-specific bacterial adhesin FimH – the most common cell attachment protein of Escherichia coli and other enterobacterial pathogens. Included are types of antibodies that activate the FimH function via interaction with ligand-induced binding sites or by wedging between domains as well as antibodies that inhibit FimH through orthosteric, parasteric, or novel dynasteric mechanisms. Understanding the molecular mechanism of antibody action against allosteric proteins provides insights on how to design antibodies with a desired functional effect, including those with neutralizing activity against bacterial and viral cell attachment proteins.  相似文献   

2.
The cAMP- and cGMP-dependent protein kinases (PKA and PKG) are canonically activated by the corresponding cyclic nucleotides. However, both systems are also sensitive to a wide range of non-canonical allosteric effectors, such as reactive oxygen species, which induce the formation of regulatory inter- and intra-molecular disulfide bridges, and disease-related mutations (DRMs). Here, we present a combined analysis of representative non-canonical allosteric effectors for PKA and PKG, and we identify common molecular mechanisms underlying non-canonical allostery in these kinases, from shifts in dynamical regulatory equilibria to modulation of inter-protomer interactions. In addition, mutations may also drive oligomerization beyond dimerization, and possibly phase transitions, causing loss of kinase inhibitory function and amplifying the allosteric effects of DRMs. Hence non-canonical allosteric stimuli often result in constitutive kinase activation underlying either physiological control of downstream signaling pathways or pathological outcomes, from aortic aneurisms to cancer predisposition. Overall, PKA and PKG emerge as “pan-sensors” going well beyond canonical cyclic nucleotide activation, revealing their versatile roles as central signaling hubs.  相似文献   

3.
FimH is the adhesive subunit of type 1 fimbriae of the Escherichia coli that is composed of a mannose-binding lectin domain and a fimbria-incorporating pilin domain. FimH is able to interact with mannosylated surface via a shear-enhanced catch bond mechanism. We show that the FimH lectin domain possesses a ligand-induced binding site (LIBS), a type of allosterically regulated epitopes characterized in integrins. Analogous to integrins, in FimH the LIBS epitope becomes exposed in the presence of the ligand (or "activating" mutations) and is located far from the ligand-binding site, close to the interdomain interface. Also, the antibody binding to the LIBS shifts adhesin from the low to high affinity state. Binding of streptavidin to the biotinylated residue within the LIBS also locks FimH in the high affinity state, suggesting that the allosteric perturbations in FimH are sustained by the interdomain wedging. In the presence of antibodies, the strength of bacterial adhesion to mannose is increased similar to the increase observed under shear force, suggesting the same allosteric mechanism, a shift in the interdomain configuration. Thus, an integrin-like allosteric link between the binding pocket and the interdomain conformation can serve as the basis for the catch bond property of FimH and, possibly, other adhesive proteins.  相似文献   

4.
Drug research and development is a multidisciplinary field with its own successes. Yet, given the complexity of the process, it also faces challenges over the long development stages and even includes those that develop once a drug is marketed, i.e. drug toxicity and drug resistance. Better success can be achieved via well designed criteria in the early drug development stages. Here, we introduce the concepts of allostery and missense mutations, and argue that incorporation of these two intermittently linked biological phenomena into the early computational drug discovery stages would help to reduce the attrition risk in later stages of the process. We discuss the individual or in concert mechanisms of actions of mutations in allostery. Design of allosteric drugs is challenging compared to orthosteric drugs, yet they have been gaining popularity in recent years as alternative systems for the therapeutic regulation of proteins with an action-at-a-distance mode and non-invasive mechanisms. We propose an easy-to-apply computational allosteric drug discovery protocol which considers the mutation effect, and detail it with three case studies focusing on (1) analysis of effect of an allosteric mutation related to isoniazid drug resistance in tuberculosis; (2) identification of a cryptic pocket in the presence of an allosteric mutation of falcipain-2 as a malarial drug target; and (3) deciphering the effects of SARS-CoV-2 evolutionary mutations on a potential allosteric modulator with changes to allosteric communication paths.  相似文献   

5.
Allostery in proteins plays an important role in regulating protein activities and influencing many biological processes such as gene expression, enzyme catalysis, and cell signaling. The process of allostery takes place when a signal detected at a site on a protein is transmitted via a mechanical pathway to a functional site and, thus, influences its activity. The pathway of allosteric communication consists of amino acids that form a network with covalent and non-covalent bonds. By mutating residues in this allosteric network, protein engineers have successfully established novel allosteric pathways to achieve desired properties in the target protein. In this review, we highlight the most recent and state-of-the-art techniques for allosteric communication engineering. We also discuss the challenges that need to be overcome and future directions for engineering protein allostery.  相似文献   

6.
Allostery plays a primary role in regulating protein activity, making it an important mechanism in human disease and drug discovery. Identifying allosteric regulatory sites to explore their biological significance and therapeutic potential is invaluable to drug discovery; however, identification remains a challenge. Allosteric sites are often “cryptic” without clear geometric or chemical features. Since allosteric regulatory sites are often less conserved in protein kinases than the orthosteric ATP binding site, allosteric ligands are commonly more specific than ATP competitive inhibitors. We present a generalizable computational protocol to predict allosteric ligand binding sites based on unbiased ligand binding simulation trajectories. We demonstrate the feasibility of this protocol by revisiting our previously published ligand binding simulations using the first identified viral proto-oncogene, Src kinase, as a model system. The binding paths for kinase inhibitor PP1 uncovered three metastable intermediate states before binding the high-affinity ATP-binding pocket, revealing two previously known allosteric sites and one novel site. Herein, we validate the novel site using a combination of virtual screening and experimental assays to identify a V-type allosteric small-molecule inhibitor that targets this novel site with specificity for Src over closely related kinases. This study provides a proof-of-concept for employing unbiased ligand binding simulations to identify cryptic allosteric binding sites and is widely applicable to other protein–ligand systems.  相似文献   

7.
8.
Legionella pneumophila infects alveolar macrophages and can cause life-threatening pneumonia in humans. Upon internalization into the host cell, L. pneumophila injects numerous effector proteins into the host cytoplasm as a part of its pathogenesis. LegK7 is an effector kinase of L. pneumophila that functionally mimics the eukaryotic Mst kinase and phosphorylates the host MOB1 protein to exploit the Hippo pathway. To elucidate the LegK7 activation mechanism, we determined the apo structure of LegK7 in an inactive form and performed a comparative analysis of LegK7 structures. LegK7 is a non-RD kinase that contains an activation segment that is ordered, irrespective of stimulation, through a unique β-hairpin-containing segment, and it does not require phosphorylation of the activation segment for activation. Instead, bacterial LegK7 becomes an active kinase via its heterologous molecular interaction with the host MOB1 protein. MOB1 binding triggers reorientation of the two lobes of the kinase domain, as well as a structural change in the interlobe hinge region in LegK7, consequently reshaping the LegK7 structure into an ATP binding-compatible closed conformation. Furthermore, we reveal that LegK7 is an atypical kinase that contains an N-terminal capping domain and a hydrophilic interlobe linker motif, which play key roles in the MOB1-induced activation of LegK7.  相似文献   

9.
10.
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical “binding and functional folding (BFF)” physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.  相似文献   

11.
Allostery is a phenomenon that the protein activity is regulated when a non-functional site on it is bounded. This phenomenon is important in life process and disease therapy. However, it is difficult to study allostery due to the lack of knowledge. Facing this demand, we have created Allosteric Database (ASD) 10 years before to collect numerous kinds of allosteric data. In this review, we will introduce the 4 categories of data in ASD. For each category, we further reviewed how researchers applied ASD data to conduct studies. We focused on their research topics, analytical methods and conclusions. Several discoveries of new drug targets and allosteric modulators driven by ASD are also summarized. We hope this review could inspire researchers with new utilities of ASD data.  相似文献   

12.
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.  相似文献   

13.
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50–200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.  相似文献   

14.
Despite sharing the name and the ability to mediate mannose-sensitive adhesion, the type 1 fimbrial FimH adhesins of Salmonella Typhimurium and Escherichia coli share only 15% sequence identity. In the present study, we demonstrate that even with this limited identity in primary sequence, these two proteins share remarkable similarity of complex receptor binding and structural properties. In silico simulations suggest that, like E. coli FimH, Salmonella FimH has a two-domain tertiary structure topology, with a mannose-binding pocket located on the apex of a lectin domain. Structural analysis of mutations that enhance S. Typhimurium FimH binding to eukaryotic cells and mannose-BSA demonstrated that they are not located proximal to the predicted mannose-binding pocket but rather occur in the vicinity of the predicted interface between the lectin and pilin domains of the adhesin. This implies that the functional effect of such mutations is indirect and probably allosteric in nature. By analogy with E. coli FimH, we suggest that Salmonella FimH functions as an allosteric catch bond adhesin, where shear-induced separation of the lectin and pilin domains results in a shift from a low affinity to a high affinity binding conformation of the lectin domain. Indeed, we observed shear-enhanced binding of whole bacteria expressing S. Typhimurium type 1 fimbriae. In addition, we observed that anti-FimH antibodies activate rather than inhibit S. Typhimurium FimH mannose binding, consistent with the allosteric catch bond properties of this adhesin.  相似文献   

15.
Human factor XIa (hFXIa) has emerged as an attractive target for development of new anticoagulants that promise higher level of safety. Different strategies have been adopted so far for the design of anti-hFXIa molecules including competitive and non-competitive inhibition. Of these, allosteric dysfunction of hFXIa’s active site is especially promising because of the possibility of controlled reduction in activity that may offer a route to safer anticoagulants. In this work, we assess fragment-based design approach to realize a group of novel allosteric hFXIa inhibitors. Starting with our earlier discovery that sulfated quinazolinone (QAO) bind in the heparin-binding site of hFXIa, we developed a group of two dozen dimeric sulfated QAOs with intervening linkers that displayed a progressive variation in inhibition potency. In direct opposition to the traditional wisdom, increasing linker flexibility led to higher potency, which could be explained by computational studies. Sulfated QAO 19S was identified as the most potent and selective inhibitor of hFXIa. Enzyme inhibition studies revealed that 19S utilizes a non-competitive mechanism of action, which was supported by fluorescence studies showing a classic sigmoidal binding profile. Studies with selected mutants of hFXIa indicated that sulfated QAOs bind in heparin-binding site of the catalytic domain of hFXIa. Overall, the approach of fragment-based design offers considerable promise for designing heparin-binding site-directed allosteric inhibitors of hFXIa.  相似文献   

16.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   

17.
Our poor understanding of the mechanism by which the peptide-hormone H2 relaxin activates its G protein coupled receptor, RXFP1 and the related receptor RXFP2, has hindered progress in its therapeutic development. Both receptors possess large ectodomains, which bind H2 relaxin, and contain an N-terminal LDLa module that is essential for receptor signaling and postulated to be a tethered agonist. Here, we show that a conserved motif (GDxxGWxxxF), C-terminal to the LDLa module, is critical for receptor activity. Importantly, this motif adopts different structures in RXFP1 and RXFP2, suggesting distinct activation mechanisms. For RXFP1, the motif is flexible, weakly associates with the LDLa module, and requires H2 relaxin binding to stabilize an active conformation. Conversely, the GDxxGWxxxF motif in RXFP2 is more closely associated with the LDLa module, forming an essential binding interface for H2 relaxin. These differences in the activation mechanism will aid drug development targeting these receptors.  相似文献   

18.
The ATP binding cassette (ABC) family of transporters moves small molecules (lipids, sugars, peptides, drugs, nutrients) across membranes in nearly all organisms. Transport activity requires conformational switching between inward-facing and outward-facing states driven by ATP-dependent dimerization of two nucleotide binding domains (NBDs). The mechanism that connects ATP binding and hydrolysis in the NBDs to conformational changes in a substrate binding site in the transmembrane domains (TMDs) is currently an outstanding question. Here we use sequence coevolution analyses together with biochemical characterization to investigate the role of a highly conserved region in intracellular loop 1 we define as the GRD motif in coordinating domain rearrangements in the heterodimeric peptide exporter from Thermus thermophilus, TmrAB. Mutations in the GRD motif alter ATPase activity as well as transport. Disulfide crosslinking, evolutionary trace, and evolutionary coupling analysis reveal that these effects are likely due to the destabilization of a network in which the GRD motif in TmrA bridges residues of the Q-loop, X-loop, and ABC motif in the NBDs to residues in the TmrAB peptide substrate binding site, thus providing an avenue for conformational coupling. We further find that disruption of this network in TmrA versus TmrB has different functional consequences, hinting at an intrinsic asymmetry in heterodimeric ABC transporters extending beyond that of the NBDs. These results support a mechanism in which the GRD motifs help coordinate a transition to an outward open conformation, and each half of the transporter likely plays a different role in the conformational cycle of TmrAB.  相似文献   

19.
The outer membrane (OM) of Gram-negative bacteria acts as a formidable barrier against a plethora of detrimental compounds owing to its asymmetric nature. This is because the OM possesses lipopolysaccharides (LPSs) in the outer leaflet and phospholipids (PLs) in the inner leaflet. The maintenance of lipid asymmetry (Mla) system is involved in preserving the distribution of PLs in OM. The periplasmic component of the system MlaC serves as the substrate-binding protein (SBP) that shuttles PLs between the inner and outer membranes. However, an in-depth report highlighting its mechanism of ligand binding is still lacking. This study reports the crystal structure of MlaC from Escherichia coli (EcMlaC) at a resolution of 2.5 Å in a quasi-open state, complexed with PL. The structural analysis reveals that EcMlaC and orthologs comprise two major domains, viz. nuclear transport factor 2-like (NTF2-like) and phospholipid-binding protein (PBP). Each domain can be further divided into two subdomains arranged in a discontinuous fashion. This study further reveals that EcMlaC is polyspecific in nature and follows a reverse mechanism of the opening of the substrate-binding site during the ligand binding. Furthermore, MlaC can bind two PLs by forming subsites in the binding pocket. These findings, altogether, have led to the proposition of the unique “segmented domain movement” mechanism of PL binding, not reported for any known SBP to date. Further, unlike typical SBPs, MlaC has originated from a cystatin-like fold. Overall, this study establishes MlaC to be a non-canonical SBP with a unique ligand-binding mechanism.  相似文献   

20.
Intermediate filaments (IFs) are key players in multiple cellular processes throughout human tissues. Their biochemical and structural properties are important for understanding filament assembly mechanisms, for interactions between IFs and binding partners, and for developing pharmacological agents that target IFs. IF proteins share a conserved coiled-coil central-rod domain flanked by variable N-terminal ‘head’ and C-terminal ‘tail’ domains. There have been several recent advances in our understanding of IF structure from the study of keratins, glial fibrillary acidic protein, and lamin. These include discoveries of (i) a knob–pocket tetramer assembly mechanism in coil 1B; (ii) a lamin-specific coil 1B insert providing a one-half superhelix turn; (iii) helical, yet flexible, linkers within the rod domain; and (iv) the identification of coil 2B residues required for mature filament assembly. Furthermore, the head and tail domains of some IFs contain low-complexity aromatic-rich kinked segments, and structures of IFs with binding partners show electrostatic surfaces are a major contributor to complex formation. These new data advance the connection between IF structure, pathologic mutations, and clinical diseases in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号