首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular weight of native apotransketolase from baker's yeast is found to be 159000 +/- 6000 by means of sedimentation equilibrium and sedimentation-diffusion rate. The enzyme in a relatively low concentration reversibly dissociates into two subunits with molecular weight of about 80 000 at pH 7.6 and 20 degrees C. The equilibrium constant of the reaction monomer-dimer is 4.4 . 10(3) M-1. A decrease of the temperature stimulates the association of monomers into dimer, while the shift of pH 7.6 into acid or alkaline region stimulates the dissociation process. Dissociation becames irreversible at pH less than 5 and greater than 10.5.  相似文献   

2.
3.
Nicotinamide mononucleotide (NMN) adenylyltransferase has been purified to homogeneity from baker's yeast crude extract. The purification procedure is relatively simple and consists of high-salt extraction of enzyme activity and precipitation with poly(ethylenimine), followed by ion-exchange and dye ligand chromatography separations. The final enzyme preparation is homogeneous as judged by a single Coomassie blue stainable band when run on nondenaturating and denaturating polyacrylamide gels. The native enzyme shows a molecular weight of about 200 000, calculated by gel filtration and sucrose gradient centrifugation. The protein possesses quaternary structure and is composed of four apparently identical Mr 50 000 subunits. The absorption spectrum shows a maximum at 280 nm and a minimum at 253 nm. The isoelectric point is 6.2. Amino acid composition analysis shows the presence of 28 half-cystine residues. The same result has been obtained by titrating the enzyme in denaturating conditions with Ellman's reagent after incubation with sodium borohydride. NMN adenylyltransferase is a glycoprotein containing 2% sugar, 2 mol of alkali-labile phosphate per mole of enzyme, and 1 mol of adenine moiety per mole of enzyme. Therefore, the possibility that the enzyme is ADP-ribosylated exists. The Km values for ATP, NMN, and nicotinate mononucleotide are 0.11 mM, 0.19 nM, and 5 mM, respectively. Kinetic analysis reveals a behavior that is consistent with an ordered sequential Bi-Bi mechanism. The pH optimum is in the range 7.2-8.4.  相似文献   

4.
5.
IgE-mediated sensitization to wheat flour belongs to the most frequent causes of occupational asthma. A cDNA library from wheat seeds was constructed and screened with serum IgE from baker's asthma patients. One IgE-reactive phage clone contained a full-length cDNA coding for an allergen with a molecular mass of 9.9 kDa and an isoelectric point of 6. According to sequence analysis it represents a member of the potato inhibitor I family, a group of serine proteinase inhibitors, and thus is the first allergen belonging to the group 6 pathogenesis-related proteins. The recombinant wheat seed proteinase inhibitor was expressed in Escherichia coli and purified to homogeneity. According to circular dichroism analysis, it represented a soluble and folded protein with high thermal stability containing mainly beta-sheets, random coils, and an alpha-helical element. The recombinant allergen showed allergenic activity in basophil histamine release assays and reacted specifically with IgE from 3 of 22 baker's asthma patients, but not with IgE from grass pollen allergic patients or patients suffering from food allergy to wheat. Allergen-specific Abs were raised to localize the allergen by immunogold electron microscopy in the starchy endosperm and the aleuron layer. The allergen is mainly expressed in mature wheat seeds and, despite an approximately 50% sequence identity, showed no relevant cross-reactivity with allergens from other plant-derived food sources such as maize, rice, beans, or potatoes. Recombinant wheat serine proteinase inhibitor, when used in combination with other specific allergens, may be useful for the diagnosis and therapy of IgE-mediated baker's asthma.  相似文献   

6.
7.
Purification and properties of phosphorylase from baker's yeast   总被引:2,自引:0,他引:2  
A rapid, reliable method for purification of phosphorylase, yielding 200-400 mg pure phosphorylase from 8 kg of pressed baker's yeast, is described. The enzyme is free of phosphorylase kinase activity but contains traces of phosphorylase phosphatase activity. Phosphorylase constitutes 0.5-0.8% of soluble protein in various strains of yeast assayed immunochemically. The subunit molecular weight (Mr) of yeast phosphorylase is around 100,000. The enzyme is composed of two subunits in various ratios, differing slightly in molecular weight and N-terminal sequence. Both are active. Only the enzyme species containing the larger subunit can form tetramers and higher oligomers. The activated enzyme is dimeric. Correlated with specific activity (1 to 110 U/mg), phosphorylase contained between less than 0.1 to 0.74 covalently bound phosphate per subunit. Inactive forms of phosphorylase could be activated by phosphorylase kinase and [gamma-32P]ATP with concomitant phosphorylation of a single threonine residue in the aminoterminal region of the large subunit. The small subunit was not labeled. The incorporated phosphate could be removed by yeast phosphorylase phosphatase, resulting in loss of activity of phosphorylase, which could be restored by ATP and phosphorylase kinase.  相似文献   

8.
Arginyl-tRNA synthetase from baker's yeast (Saccharomyces cerevisiae, strain 836) was obtained pure by a large-scale preparative method, which involves four chromatographic columns and one preparative polyacrylamide gel electrophoretic step. The enzyme has a high specific activity (9000 U/mg) and consists of a single polypeptide chain of molecular weight approximately 73000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecylsulphate. Amino acid analysis of the enzyme permitted calculation of the absorption coefficient of arginyl-tRNA synthetase (A(1 mg/ml 280 nm)=1.26). Concerning kinetic parameters of the enzyme we found the following Km values: 0.28 muM, 300 muM, 1.5 muM for tRNA(Arg III), ATP and arginine in the aminoacylation reaction, and 1400 muM, 2.5 muM, and 50 muM for ATP, arginine and PP(i) in the ATP-PP(i) exchange reaction. Arginyl-tRNA synthetase required tRNA(Arg III) to catalyse the ATP-PP(i) exchange reaction.  相似文献   

9.
The kinetic and molecular properties of AMP deaminase [AMP aminohydrolase, EC 3.5.4.6] purified from baker's yeast (saccharomyces cerevisiae) were investigated. The enzyme was activated by ATP and dATP, but inhibited by Pi and GTP in an allosteric manner. Alkali metal ions and alkaline earth metal ions activated the enzyme to various extent. Kinetic negative cooperativity was observed in the binding of nucleoside triphosphates. Kinetic analysis showed that the number of interaction sites for AMP (substrate) and Pi (inhibitor) is two each per enzyme molecule. The molecular weight of the native enzyme was estimated to be 360,000 by sedimentation equilibrium studies. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, the enzyme gave a single polypeptide band with a molecular weight of 83,000, suggesting that the native enzyme has a tetrameric structure. Baker's yeast AMP deaminase was concluded to consist of two "promoter" units which each consist of two polypeptide chains with identical molecular weight.  相似文献   

10.
A major cytochrome b peptide was purified from yeast mitochondria by a procedure involving solubilization in deoxycholic and cholic acids, ammonium sulfate fractionation, proteolytic digestion, and sucrose gradient centrifugation in the presence of Tween 80. The homogeneity of the purified protein was established by the criteria that the product was spectrally pure and yielded a single band on both sodium dodecyl sulfate polyacrylamide gel electrophoresis, and by gel isoelectric focusing. The purified cytochrome b polypeptide had absorption maxima at 562, 532, and 430 nm in the reduced form and at 525 to 570 nm and 419 nm in the oxidized form. The reduced minus oxidized difference spectra revealed absorption bands at 562, 532, and 430 nm at room temperature and 559, 529, and 429 nm at 77 K, respectively. The heme group was identified as protoheme by formation of the reduced pyridine hemochromogen. Treatment of the reduced form with carbon monoxide affected the absorption spectrum, indicating that the isolated hemoprotein was modified compared to native cytochrome b. The apparent molecular weight of the preparation was 28,000 based on sodium dodecyl sulfate polyacrylamide-gel electrophoresis and 28,800 based on sucrose gradient centrifugation. The isolated cytochrome b polypeptide showed a strong tendency to aggregate.  相似文献   

11.
The purification and properties of NADPH-linked glyoxylate reductase [EC 1. 1. 1. 79] from baker's yeast were studied. Two active fractions (peak I and peak II) were isolated by DEAE-cellulose column chromatography. The peak I fraction was purified to homogeneity by the criteria of disc gel electrophoresis and tentatively designated glyoxylate reductase I. Its molecular weight was calculated to be 31,000 from gel filtration measurements. The enzyme reduced glyoxylate 7 times faster than hydroxypyruvate and was specific for NADPH. The enzyme showed optimum activity between pH 5.5 and 7.2. The Michaelis constants for glyoxylate and NADPH were found to be 13 mM and 4 microM, respectively. The enzymic activity was not significantly affected by anions, except for nitrate and iodide, which were inhibitory.  相似文献   

12.
13.
14.
15.
Three endopeptidases, proteinases A, B, and Y, were purified from baker's yeast, Saccharomyces cerevisiae. Two molecular forms of proteinase A (PRA), Mr 45,000 and 54,000, (estimated on SDS-PAGE) were obtained. Both forms were inhibited by pepstatin and other acid proteinase inhibitors. The enzyme digested hemoglobin most rapidly at pH 2.7-3.2 and casein at pH 2.4-2.8 and 5.5-6.0. The optimum pH for hydrolysis of protein substrates could be shifted to about 5 with 4-6 M urea. Urea also stimulated the enzyme activity by 30-50%. As other acid proteinases, the enzyme preferentially cleaved peptide bonds of X-Tyr and X-Phe type. A proteinase B (PRB) preparation of approximately Mr 33,000 possessed milk clotting activity and showed an inhibition pattern typical for seryl-sulfhydryl proteases. The purified enzyme could be stabilized with 40% glycerol and stored at -20 degrees C without significant loss of activity for several months. The third endopeptidase, designated PRY, of Mr 72,000 when estimated by Sephadex G-100 gel filtration, had properties resembling PRA and PRB. Similar to PRB, it could be inhibited by up to 90% with phenylmethylsulfonyl fluoride and para-chloromercuribenzoate and preferentially hydrolyzed the Leu15-Tyr16 peptide bond of the oxidized beta-chain of insulin. On the other hand, contrary to PRB, it had neither milk clotting activity nor esterolytic activity toward N-acetyl-L-tyrosine ethyl ester and N-benzoyl-L-tyrosine ethyl ester and was stable during storage at -20 degrees C without glycerol. The enzyme also showed a lower pH optimum for hydrolysis of casein yellow than PRB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) was found in extract of baker's yeast (Saccharomyces cerevisiae), and was purified to electrophoretic homogeneity using phosphocellulose adsorption chromatography and affinity elution by ATP. The enzyme shows cooperative binding of AMP (Hill coefficient, nH, 1.7) with an s0.5 value of 2.6 mM in the absence or presence of alkali metals. ATP acts as a positive effector, lowering nH to 1.0 and s0.5 to 0.02 mM. P1 inhibits the enzyme in an allosteric manner: s0.5 and nH values increase with increase in Pi concentration. In the physiological range of adenylate energy charge in yeast cells (0.5 to 0.9), the AMP deaminase activity increases sharply with decreasing energy charge, and the decrease in the size of adenylate pool causes a marked decrease in the rate of the deaminase reaction. AMP deaminase may act as a part of the system that protects against wide excursions of energy charge and adenylate pool size in yeast cells. These suggestions, based on the properties of the enzyme observed in vitro, are consistent with the results of experiments on baker's yeast in vivo reported by other workers.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号