首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A monoclonal antibody, GE 4.90, has been produced following immunization of mice with the 95-kDa protein (triadin) of terminal cisternae of rabbit fast skeletal muscle isolated in nondenaturing detergent. The antibody binds to a protein of Mr95K in Western blots of microsomal vesicles electrophoresed in the presence of mercaptoethanol. The greatest intensity of the immunoblot reaction is to enriched terminal cisternae vesicles while little binding is seen to longitudinal reticulum and transverse tubules. The content of antigen in different microsomal subfractions has been estimated by immunoassay: terminal cisternae/triads contain 5.6 micrograms/mg of protein while heavy terminal cisternae contain 32 micrograms/mg. The molar content of triadin in vesicles is approximately the same as that of the ryanodine receptor. When Western blots of gels of terminal cisternae are run in nonreducing conditions, little protein of Mr95K is visible. A number of bands, however, forming a ladder of higher molecular weight are discerned, indicating that the 95-kDa protein forms a disulfide-linked homopolymer. A biotinylated aromatic disulfide reagent (biotin-HPDP) labels the 95-kDa protein, the junctional foot protein, and the Mr 106K protein described by others as a Ca(2+)-release channel (SG 106). This latter protein migrates in gel electrophoresis under nonreducing conditions at a molecular weight different from that of the 95-kDa protein. We did not detect any alteration of binding of the 95-kDa protein to the dihydropyridine receptor or junctional foot protein dependent on the state of oxidation of cysteine residues of either triadin or receptor protein used as the overlay probe.  相似文献   

2.
Biochemical approaches toward understanding the mechanism of muscle excitation have in recent years been directed to identification and isolation of proteins of the triad junction. The principal protein described—the junctional foot protein (JFP)—was initially identified by morphological criteria and isolated using antibody-affinity chromatography. Subsequently this protein was described as the ryanodine receptor. It has been isolated and incorporated into lipid bilayers as a cation channel. This in its turn has directed attention toward the transverse (T)-tubular junctional constituents. Three approaches employing the JFP as a probe toward identifying these moieties on the T-tubule are described here. The binding of the JFP to the dihydropyridine receptor, which has been hypothesized to be the voltage sensor in excitation-contraction coupling, is also discussed. The detailed architecture and function of T-tubular proteins remain to be resolved.Abbreviations DHP dihydropyridine - GAPD glyceraldehyde 3-phosphate dehydrogenase - IP3 inositol 1,4,5-trisphosphate - JFP junctional foot protein - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - SR sarcoplasmic reticulum - TC terminal cisterna - T-tubule transverse tubule  相似文献   

3.
Summary Isolated triadic proteins were employed to investigate the molecular architecture of the triad junction in skeletal muscle. Immunoaffinity-purified junctional foot protein (JFP), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), aldolase and partially purified dihydropyridine (DHP) receptor were employed to probe protein-protein interactions using affinity chromatography, protein overlay and crosslinking techniques. The JFP, an integral protein of the sarcoplasmic reticulum (SR) preferentially binds to GAPDH and aldolase, peripheral proteins of the transverse (T)-tubule. No direct binding of JFP to the DHP receptor was detected. The interactions of JFP with GAPDH and aldolase appear to be specific since other glycolytic enzymes associated with membranes do not bind to the JFP. The DHP receptor, an integral protein of the T-tubule, also binds GAPDH and aldolase. A ternary complex between the JFP and the DHP receptor can be formed in the presence of GAPDH. In addition, the DHP receptor binds to a previously undetectedM r 95 K protein which is distinct from the SR Ca2+ pump and phosphorylaseb. TheM r 95 K protein is an integral protein of the junctional domain of the SR terminal cisternae. It is also present in the newly identified strong triads (accompanying paper). From these findings, we propose a new model for the triad junction.  相似文献   

4.
The ryanodine receptor has been purified from junctional terminal cisternae of fast skeletal muscle sarcoplasmic reticulum (SR). The ryanodine receptor was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and stabilized by addition of phospholipids. The solubilized receptor showed the same [3H]ryanodine binding properties as the original SR vesicles in terms of affinity, Ca2+ dependence, and salt dependence. Purification of the ryanodine receptor was performed by sequential column chromatography on heparin-agarose and hydroxylapatite in the presence of CHAPS. The purified receptor bound 393 +/- 65 pmol of ryanodine/mg of protein (mean +/- S.E., n = 5). The purified receptor showed three bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Mr of 360,000, 330,000, and 175,000. Densitometry indicates that these are present in the ratio of 2/1/1, suggesting a monomer Mr of 1.225 X 10(6) and supported by gel exclusion chromatography in CHAPS. Electron microscopy of the purified preparation showed the square shape of 210 A characteristic of and comparable in size and shape to the feet structures of junctional terminal cisternae of SR, indicating that ryanodine binds directly to the feet structures. From the ryanodine binding data, the stoichiometry between ryanodine binding sites to the number of feet structures is estimated to be about 2. Since the ryanodine receptor is coupled to Ca2+ gating, the present finding suggests that the ryanodine receptor and Ca2+ release channel represent a functional unit, the structural unit being the foot structure which, in situ, is junctionally associated with the transverse tubules. It is across this triad junction that the signal for Ca2+ release is expressed. Thus, the foot structure appears to directly respond to the signal from transverse tubules, causing the release of Ca2+ from the junctional face membrane of the terminal cisternae of SR.  相似文献   

5.
Bovine adrenal cortex contains a high molecular weight casein kinase II-like enzyme (Mr 500,000) that phosphorylates a specific serine residue in the cytoplasmic domain of the low density lipoprotein (LDL) receptor (Kishimoto, A., Brown, M. S., Slaughter, C. A., and Goldstein, J. L. (1987) J Biol. Chem. 262, 1344-1351). In the current paper, we provide evidence to suggest that this 500-kDa kinase can be dissociated into two subunits, a catalytic subunit and an activator subunit, by treatment with 1 M NaCl. The catalytic subunit was purified to homogeneity (greater than 100,000-fold) using affinity chromatography on GTP-agarose plus several other chromatography steps. It had an Mr of 50,000 by gel filtration and 35,000 by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The catalytic subunit phosphorylated casein actively, but it phosphorylated the LDL receptor with only low affinity. The affinity for the LDL receptor was increased 10-fold (saturation at 10 nM LDL receptor) by addition of a second protein that was released from a high molecular weight 500-kDa complex by 1 M NaCl. This activator protein (Mr 120,000 by gel filtration) was extremely heat stable but was destroyed by trypsin. It appeared to be required in stoichiometric amounts with relation to the LDL receptor. It did not increase the ability of the 50-kDa subunit to phosphorylate casein nor did it activate phosphorylation of the LDL receptor or casein by classic casein kinase II. The current data raise the possibility that the specificity of the 500-kDa LDL receptor kinase is attributable to a heat-stable activator subunit that binds to the LDL receptor and thereby renders it a better substrate for the catalytic subunit of the kinase.  相似文献   

6.
Purification and characterization of the human brain insulin receptor   总被引:2,自引:0,他引:2  
The insulin receptor from human brain cortex was purified by a combination monoclonal antibody affinity column and a wheat germ agglutinin column. This purified receptor preparation exhibited major protein bands of apparent Mr = 135,000 and 95,000, molecular weights comparable to those for the alpha and beta subunits of the purified human placental and rat liver receptors. A minor protein band of apparent Mr = 120,000 was also observed in the brain receptor preparation. Crosslinking of 125I-insulin to all three receptor preparations was found to preferentially label a protein of apparent Mr = 135,000. In contrast, cross-linking of 125I-labeled insulin-like growth factor I to the brain preparation preferentially labeled the protein of apparent Mr = 120,000. The purified brain insulin receptor was found to be identical with the placental insulin receptor in the amount of neuraminidase-sensitive sialic acid and reaction with three monoclonal antibodies to the beta subunit of the placental receptor. In contrast, a monoclonal antibody to the insulin binding site recognized the placental receptor approximately 300 times better than the brain receptor. These results indicate that the brain insulin receptor differs from the receptor in other tissues and suggests that this difference is not simply due to the amount of sialic acid on the receptor.  相似文献   

7.
Collagenase preparations (a mixture of enzymes including collagenase, clostripain, and a casein-degrading protease) degraded the beta subunit (Mr = 95,000) of the purified insulin receptor into fragments of Mr less than 15,000, without degrading the alpha subunit. The resulting beta-digested insulin receptor preparations were found to bind insulin as well as control insulin receptor, as assessed by either cross-linking of 125I-insulin to the digested receptor or by separating insulin bound to receptor from free insulin by high performance liquid chromatography. Moreover, the beta-digested insulin receptor preparations were still precipitated by a monoclonal antibody directed against the insulin-binding site. In contrast, the beta-digested insulin receptor lacked protein kinase activity since it no longer phosphorylated either itself, or an exogenous substrate, calf thymus histone. These results support the identification of the beta subunit of the insulin receptor as a protein kinase.  相似文献   

8.
In fast twitch skeletal muscle, the signal for excitation-contraction coupling is transferred from transverse tubule across the triad junction; calcium is thereby released from the terminal cisternae of sarcoplasmic reticulum triggering muscle contraction. Recently, the feet structures of terminal cisternae, which bridge the gap at the triad junction, have been identified as the ryanodine receptor and in turn with the calcium release channels of sarcoplasmic reticulum. The latter consists of an oligomer of a single high molecular weight polypeptide (Mr 360,000). This study attempts to identify the component in the transverse tubule which ligands with the foot structure to form the triad junction. The purified ryanodine receptor, derivatized with sulfosuccinimidyl-2-(p-azidosalicylimido)-1,3'-dithiopropionate (SASD), a thiol-cleavable, 125I-iodinatable, and photoactive probe, was shown to selectively cross-link to a protein with Mr of 71,000 in isolated transverse tubules. This coupling protein was purified from transverse tubule by solubilization with the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) and then purified by sequential column chromatography. In the absence of sulfhydryl agents, the purified polypeptide has an Mr of 61,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A complementary approach using SASD was employed to confirm association of the coupling protein with the ryanodine receptor of terminal cisternae. We conclude that the transverse tubule coupling protein together with the ryanodine receptor (foot structure) is involved in the liganding between transverse tubule and terminal cisternae of sacroplasmic reticulum.  相似文献   

9.
Five protein kinases were used to study the phosphorylation pattern of the purified skeletal muscle receptor for calcium-channel blockers (CaCB). cAMP kinase, cGMP kinase, protein kinase C, calmodulin kinase II and casein kinase II phosphorylated the 165-kDa and the 55-kDa proteins of the purified CaCB receptor. The 130/28-kDa and the 32-kDa protein of the receptor are not phosphorylated by these protein kinases. Among these protein kinases only cAMP kinase phosphorylated the 165-kDa subunit with 2-3-fold higher initial rate than the 55-kDa subunit. Casein kinase II phosphorylated the 165-kDa and the 55-kDa protein of the receptor with comparable rates. cGMP kinase, protein kinase C and calmodulin kinase II phosphorylated preferentially the 55-kDa protein. The 55-kDa protein is phosphorylated 50 times faster by cGMP kinase and protein kinase C than by calmodulin kinase II or casein kinase II and about 10 times faster by these enzymes than by cAMP kinase. Two-dimensional peptide maps of the 165-kDa subunit yielded a total of 11 phosphopeptides. Four or five peptides are phosphorylated specifically by cAMP kinase, cGMP kinase, casein kinase II and protein kinase C, whereas the other peptides are modified by several kinases. The same kinases phosphorylate 11 peptides in the 55-kDa subunit. Again, some of these peptides are modified specifically by each kinase. These results suggest that the 165-kDa and the 55-kDa subunit contain specific phosphorylation sites for cAMP kinase, cGMP kinase, casein kinase II and protein kinase C. Phosphorylation of these sites may be relevant for the in vivo function of the CaCB receptor.  相似文献   

10.
《The Journal of cell biology》1988,107(6):2587-2600
The architecture of the junctional sarcoplasmic reticulum (SR) and transverse tubule (T tubule) membranes and the morphology of the two major proteins isolated from these membranes, the ryanodine receptor (or foot protein) and the dihydropyridine receptor, have been examined in detail. Evidence for a direct interaction between the foot protein and a protein component of the junctional T tubule membrane is presented. Comparisons between freeze-fracture images of the junctional SR and rotary-shadowed images of isolated triads and of the isolated foot protein, show that the foot protein has two domains. One is the large hydrophilic foot which spans the junctional gap and is composed of four subunits. The other is a hydrophobic domain which presumably forms the SR Ca2+-release channel and which also has a fourfold symmetry. Freeze-fracture images of the junctional T tubule membranes demonstrate the presence of diamond-shaped clusters of particles that correspond exactly in position to the subunits of the feet protein. These results suggest the presence of a large junctional complex spanning the two junctional membranes and intervening gap. This junctional complex is an ideal candidate for a mechanical coupling hypothesis of excitation-contraction coupling at the triadic junction.  相似文献   

11.
Affinity labeling of the rat pancreatic cholecystokinin (CCK) receptor with decapeptide probes has identified an Mr = 85,000-95,000 protein, distinct from the Mr = 80,000 component previously labeled with 125I-Bolton Hunter-CCK-33. We have characterized the carbohydrate composition of this novel protein labeled with 125I-D-Tyr-Gly-[(Nle28,31)-CCK-26-33] and disuccinimidyl suberate by using chemical and enzymatic deglycosylation and lectin chromatography. The Mr = 85,000-95,000 component was demonstrated to be an N-linked sialoglycoprotein based on neuraminidase digestion to Mr = 75,000-85,000 and endo-beta-N-acetylglucosaminidase F (Endo F) digestion to Mr = 42,000. This was distinct from the Mr = 65,000 product of Endo F digestion of the protein labeled with 125I-Bolton Hunter-CCK-33. Lack of an effect of endo-beta-N-acetylglucosaminidase H demonstrated the absence of N-linked simple oligosaccharides, while products of chemical deglycosylation with hydrogen fluoride and endo-alpha-N-acetylgalactosaminidase supported the absence of O-linked carbohydrate. The presence of at least four oligosaccharide chains on the core protein was suggested by Endo F digestion of the Mr = 85,000-95,000 protein using limiting enzyme conditions. This glycoprotein was retained on wheat germ agglutininagarose and eluted by N,N',N"-triacetylchitotriose. Identification of the Mr = 85,000-95,000 component on the ectodomain of the plasmalemma of intact pancreatic acini confirmed this to be the fully processed form of the CCK-binding protein.  相似文献   

12.
13.
Summary Dyads (transverse tubule—junctional sarcoplasmic reticulum complexes) were enriched from rat ventricle microsomes by continuous sucrose gradients. The major vesicle peak at 36% sucrose contained up to 90% of those membranes which possessed dihydropyridine (DHP) binding sites (markers for transverse tubules) and all membranes which possessed ryanodine receptors and the putative junctional foot protein (markers for junctional sarcoplasmic reticulum). In addition, the 36% sucrose peak contained half of the vesicles with muscarine receptors. Vesicles derived from the nonjunctional plasma membrane as defined by a low content of dihydropyridine binding sites per muscarine receptor and from the free sarcoplasmic reticulum as defined by the Mr 102K Ca2+ ATPase were associated with a diffuse protein band (22–30% sucrose) in the lighter region of the gradient. These organelles were recovered in low yield. Putative dyads were not broken by French press treatment at 8,000 psi and only partially disrupted at 14,000 psi. The monoclonal antibody GE4.90 against skeletal muscle triadin, a protein which links the DHP receptor to the junctional foot protein in skeletal muscle triad junctions, cross-reacted with a protein in rat dyads of the same Mr as triadin. Western blots of muscle microsomes from preparations which had been treated with 100mm iodoacetamide throughout the isolation procedure showed that cardiac triadin consisted predominantly of a band of Mr 95 kD. Higher molecular weight polymers were detectable but low in content, in contrast with the ladder of oligomeric forms in rat psoas muscle microsomes. Cardiac triadin was not dissolved from the microsomes by hypertonic salt or Triton X-100, indicating that it, as well as skeletal muscle triadin, was an integral protein of the junctional SR. The cardiac epitope was localized to the junctional SR by comparison of its distribution with that of organelle markers in both total microsome and in French press disrupted dyad preparations. Immunofluorescence localization of triadin using mAb GE4.90 revealed that intact rat ventricular muscle tissue was stained following a well-defined pattern of bands every sarcomere. This spacing of bands was consistent with the interpretation that triadin was present in the dyadic junctional regions.  相似文献   

14.
Multimeric structure of the tumor necrosis factor receptor of HeLa cells   总被引:5,自引:0,他引:5  
The tumor necrosis factor (TNF) receptor of HeLa cells was solubilized in Triton X-100 and characterized by gel filtration, affinity labeling, and ligand blotting studies. Receptors solubilized with Triton X-100 eluted in gel filtration as a major peak of Mr = 330,000 and retained high affinity binding (KD = 0.25 nM). Affinity labeling of soluble receptor/125I-TNF complexes using the reversible, bifunctional bis[2-(succinimidooxycarbonyl-oxy)ethyl] sulfone resulted in the formation of cross-linked species of Mr = 310,000, 150,000-175,000, 95,000, and 75,000. The formation of these complexes was competitively inhibited by unlabeled TNF. Partial reversal of cross-linking in these complexes and their analysis by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) resolved 125I-TNF dimers cleaved from the 95,000 band and 125I-TNF monomer cleaved from the 75,000 band, providing evidence for a Mr approximately 60,000 subunit. In addition, the 95,000 and 75,000 bands were resolved as components of larger complexes (Mr = 150,000-175,000), which presumably contain two receptor subunits. The Mr 95,000 and 75,000 bands were also released from the Mr 310,000 complex by reduction with dithiothreitol, suggesting a role for disulfide bond stabilization. To investigate the association of the putative receptor subunits, Triton X-100 extracts from HeLa membranes were fractionated by SDS-PAGE without reduction and transferred electrophoretically to nylon membranes for TNF binding assays. Only two bands of Mr = 60,000 and 70,000 specifically bound TNF, and higher Mr binding activity was not observed. These results indicate that TNF receptors in HeLa cells are high molecular weight complexes containing Mr = 60,000 and 70,000 subunits each capable of binding TNF and that the complexes are primarily stabilized by non-covalent, hydrophobic interactions.  相似文献   

15.
Biogenesis of the somatogenic receptor in rat liver   总被引:1,自引:0,他引:1  
Certain structural characteristics, in particular the type of oligosaccharide chains associated with the rat liver somatogenic (GH) receptors, were studied in different isolated organelles involved in receptor biosynthesis, maturation, and binding, with the use of ligand-affinity cross-linking, incubation with various oligosaccharide chain-cleaving enzymes, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In an endoplasmic reticulum-enriched fraction, a somatogenic receptor with Mr 33,000, after correction for bound ligand (assuming a 1:1 binding ratio of ligand to receptor) was found to contain N-linked high mannose oligosaccharide chain(s). In an intermediate density fraction, enriched in cis-Golgi, a major receptor of Mr 43,000 was found to contain N-linked complex type of oligosaccharide chains. In a low density membrane fraction, containing trans-Golgi complex membranes and endocytic vesicles, three receptors of Mr 95,000, 55,000, and 43,000 were found. These three receptors contain N-linked complex-type oligosaccharide chains. Neuraminidase treatment resulted in a decrease of the Mr 95,000 and 43,000 receptors to Mr 81,000 and 39,000, respectively. Two specific somatogenic receptors of Mr 95,000 and 43,000 containing N-linked complex type of oligosaccharides were found in an isolated plasma membrane-enriched fraction. When isolated hepatocytes were analyzed, the Mr 95,000 receptor was found to be the major labeled species. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis (first dimension nonreducing and the second dimension reducing conditions), showed that the Mr 43,000 receptor is contained within the Mr 95,000 receptor. The data suggest that the Mr 33,000 receptor found in endoplasmic reticulum constitutes a precursor to the Mr 43,000 receptor and that the Mr 43,000 receptor is complexed with an unknown subunit during transport through the Golgi complex to form an Mr 95,000 receptor present on the cell surface.  相似文献   

16.
Sodium dodecyl sulfate gel electrophoresis of the radioiodinated native amiloride-sensitive epithelial sodium channel protein isolated from bovine renal papilla and cultured amphibian A6 cells under denatured and nonreduced conditions revealed an 125I-labeled protein band of Mr approximately 730,000. Upon reduction, this protein was resolved into five major polypeptide bands with apparent average Mr values of 315,000, 149,000, 95,000, 71,000, and 55,000. The amiloride analog [3H]methylbromoamiloride has been used as a photoaffinity label to determine the location of the binding site for amiloride on the epithelial sodium channel protein. [3H]Methylbromoamiloride binds covalently to the sodium channel at high affinity binding sites with a half-maximal binding concentration of 0.2 microM. [3H]Methylbromoamiloride was specifically photoincorporated into the Mr approximately 150,000 polypeptide and this incorporation was blocked by addition of excess amiloride. These data suggest that the epithelial sodium channel protein is composed of at least five nonidentical polypeptide subunits, only one of which specifically binds amiloride.  相似文献   

17.
Two soluble cAMP-dependent protein kinases were purified from the cytoplasm of Paramecium tetraurelia. Both kinases consisted of a 40-kDa catalytic subunit and a 44-kDa regulatory subunit. The two forms of the enzyme were separated by anion-exchange chromatography. Affinity chromatography on cAMP-Sepharose separated the regulatory subunit (retained by the column) from the cAMP-independent catalytic subunit (not retained). Four classes of monoclonal antibodies were generated. One class was specific for the catalytic subunit of both cAMP-dependent protein kinases, and three classes recognized the regulatory subunit of both forms of the enzyme. Subunits of 40 and 44 kDa were detected on immunoblots of purified cilia and of crude cell extracts. In addition, one class of antibodies specific for the regulatory subunit detected a ciliary protein with a molecular mass of 48 kDa. The monoclonal antibodies did not recognize type I or type II cAMP-dependent protein kinase from rabbit muscle nor did they cross-react with proteins from several unicellular eucaryotes, with one exception: antibodies specific for the catalytic subunit recognized a 40-kDa protein of Tetrahymena pyriformis.  相似文献   

18.
We have reported the solubilization of complexes between vasoactive intestinal peptide (VIP) and its receptor from rat liver in a GTP-sensitive form of Mr 150,000 [Couvineau, A., Amiranoff, B. & Laburthe, M. (1986) J. Biol. Chem. 261, 14482-14489]. In the present study, we demonstrate a stable association of solubilized VIP receptor and stimulatory guanine nucleotide-binding protein (Gs protein), taking advantage of the ability of the glycoproteic VIP receptor (Mr 48,000), and the inability of the Gs protein, to adsorb to wheat germ agglutinin (WGA). 125I-VIP-receptor complexes solubilized in Triton X-100 were adsorbed on WGA-Sepharose, extensively washed and the radioactivity retained was eluted with 1 mM GTP showing that: (a) radioactivity corresponds to free 125I-VIP and (b) alpha s (Mr 42,000) and beta (Mr 35,000) subunits of Gs protein are detectable in the GTP eluate by immunoblotting using antisera against these subunits. Such an effect of GTP implied that a stable ternary complex consisting of VIP, receptor and Gs protein had been adsorbed to WGA-Sepharose. When Triton-solubilized 125I-VIP-receptor complexes were adsorbed on WGA-Sepharose, then retained material was specifically eluted with 0.3 M N-acetylglucosamine, analysis of the sugar eluate showed the following results. (a) GTP induces the dissociation of 125I-VIP-receptor complexes of Mr 150,000 contained in the eluate indicating that 125I-VIP-receptor-G protein complexes had been adsorbed to the WGA column. (b) The Mr-42,000 alpha s subunit can be specifically ADP-ribosylated by cholera toxin. (c) Immunoblotting using antisera against the alpha s and beta subunits of Gs protein, reveals Mr-42,000 and Mr-35,000 components corresponding to alpha s and beta subunits, respectively. (d) Affinity cross-linking using dithiobis(succinimidyl-propionate) of 125-I-VIP-receptor complexes eluted from the WGA column reveals a major band corresponding to Mr 150,000. Immunoblotting using antisera against the beta-subunit shows the presence of the beta subunit (Mr 35,000) in this Mr-150,000 component. In conclusion, these data provide functional and immunochemical evidence for the physical association of solubilized VIP-receptor complexes with alpha s and beta subunits of Gs protein.  相似文献   

19.
The type I IGF receptor from human placental membranes was purified to near homogeneity by affinity chromatography on IGF I-Sepharose. SDS-polyacrylamide gel electrophoresis of the affinity purified type I IGF receptor demonstrated a high molecular weight protein with Mr greater than or equal to 300,000 under non-reducing conditions. After reduction with 2-mercaptoethanol two protein bands were found of Mr = 125,000 and 95,000, representing the alpha- and beta-subunits of the receptor molecule, respectively. A co-purification of the insulin receptor through the IGF I-affinity column could be avoided by a preincubation step with insulin.  相似文献   

20.
A brush-border membranal proteinase, which specifically clips the catalytic subunit of cAMP-dependent protein kinase, is shown to cleave the receptor for the epidermal growth factor (EGF) (Mr = 170,000) into two fragments of Mr = 140,000 and 30,000. The 140-kDa fragment retains its EGF-binding site and its EGF-dependent protein tyrosine kinase activity on exogenous substrates, but it loses its capacity to undergo self-phosphorylation. It is shown to be distinct from the 150-kDa fragment of the EGF receptor obtained by the Ca2+-activated neutral proteinase. The membranal proteinase strictly recognizes the native structure of the receptor and fails to cleave either the denatured receptor or its 150-kDa degradation product. Thus the membranal proteinase acts as a conformation-recognizing probe for both the protein-tyrosine kinase domain of the EGF receptor and the catalytic subunit of cAMP-dependent protein-Ser/Thr kinase, suggesting that the known sequence homology between these two kinases is also reflected in their conformation. The well defined 140-kDa fragment described here is useful for structure-function studies of the EGF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号