首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mdm2 is a member of the RING finger family of ubiquitin ligases and is best known for its role in targeting the tumor suppressor p53 for ubiquitination and degradation. Mdm2 can bind to itself and to the structurally related protein MdmX, and these interactions involve the RING finger domain of Mdm2 and MdmX, respectively. In this study, we performed a mutational analysis of the RING finger domain of Mdm2, and we identified several amino acid residues that are important for Mdm2 to exert its ubiquitin ligase function. Mutation of some of these residues interfered with the Mdm2-Mdm2 interaction indicating that a homomeric complex represents the active form of Mdm2. Mutation of other residues did not detectably affect the ability of Mdm2 to interact with itself but reduced the ability of Mdm2 to interact with UbcH5. Remarkably, MdmX efficiently rescued the ubiquitin ligase activity of the latter Mdm2 mutants in vitro and within cells. Because the interaction of Mdm2 with MdmX is more stable than the Mdm2-Mdm2 interaction, this suggests that Mdm2-MdmX complexes play a prominent role in p53 ubiquitination in vivo. Furthermore, we show that, similar to Mdm2, the Mdm2-MdmX complex has Nedd8 ligase activity and that all mutations that affect the ubiquitin ligase activity of Mdm2 also affect its Nedd8 ligase activity. From a mechanistic perspective, this suggests that the actual function of Mdm2 and Mdm2-MdmX, respectively, in p53 ubiquitination and in p53 neddylation is similar for both processes.  相似文献   

3.
Mdm2 can mediate p53 ubiquitylation and degradation either in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer. The ubiquitin ligase activity of these complexes resides mainly in their respective RING finger domains and also requires adjacent C-terminal tails. So far, structural studies have failed to show significant differences between Mdm2 RING homodimers and Mdm2/MdmX RING heterodimers. Here, we report that not only the primary amino acid sequence, but also the length of the C-terminal tail of Mdm2 is highly conserved through evolution and plays an important role in Mdm2 activity toward p53. Mdm2 mutants with extended C termini do not ubiquitylate p53 despite being capable of forming Mdm2 homodimers through both RING-acidic domain and RING-RING interactions. All extended mutants also retained the ability to interact with MdmX, and this interaction led to reactivation of their E3 ubiquitin ligase activity. In contrast, only a subset of extended Mdm2 mutants was activated by the interaction with Mdm2 RING domain, suggesting that Mdm2 homodimers and Mdm2/MdmX heterodimers may not be structurally and functionally fully equivalent.Key words: p53, Mdm2, RING domain, ubiquitylation, ubiquitin ligase, E3  相似文献   

4.
Inhibition of p53 degradation by Mdm2 acetylation   总被引:5,自引:0,他引:5  
Wang X  Taplick J  Geva N  Oren M 《FEBS letters》2004,561(1-3):195-201
  相似文献   

5.
Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53   总被引:33,自引:0,他引:33  
Mdm2 has been shown to regulate p53 stability by targeting the p53 protein for proteasomal degradation. We now report that Mdm2 is a ubiquitin protein ligase (E3) for p53 and that its activity is dependent on its RING finger. Furthermore, we show that Mdm2 mediates its own ubiquitination in a RING finger-dependent manner, which requires no eukaryotic proteins other than ubiquitin-activating enzyme (E1) and an ubiquitin-conjugating enzyme (E2). It is apparent, therefore, that Mdm2 manifests an intrinsic capacity to mediate ubiquitination. Mutation of putative zinc coordination residues abrogated this activity, as did chelation of divalent cations. After cation chelation, the full activity could be restored by addition of zinc. We further demonstrate that the degradation of p53 and Mdm2 in cells requires additional potential zinc-coordinating residues beyond those required for the intrinsic activity of Mdm2 in vitro. Replacement of the Mdm2 RING with that of another protein (Praja1) reconstituted ubiquitination and proteasomal degradation of Mdm2. However, this RING was ineffective in ubiquitination and proteasomal targeting of p53, suggesting that there may be specificity at the level of the RING in the recognition of heterologous substrates.  相似文献   

6.
The tumor suppressor p53 maintains genome stability and prevents malignant transformation by promoting cell cycle arrest and apoptosis. Both Mdm2 and Pirh2 have been shown to ubiquitylate p53 through their RING domains, thereby targeting p53 for proteasomal degradation. Using structural and functional analyses, here we show that the Pirh2 RING domain differs from the Mdm2 RING domain in its oligomeric state, surface charge distribution, and zinc coordination scheme. Pirh2 also possesses weaker E3 ligase activity toward p53 and directs ubiquitin to different residues on p53. NMR and mutagenesis studies suggest that whereas Pirh2 and Mdm2 share a conserved E2 binding site, the seven C-terminal residues of the Mdm2 RING directly contribute to Mdm2 E3 ligase activity, a feature unique to Mdm2 and absent in the Pirh2 RING domain. This comprehensive analysis of the Pirh2 and Mdm2 RING domains provides structural and mechanistic insight into p53 regulation by its E3 ligases.  相似文献   

7.
8.
Mdm2 can mediate p53 ubiquitylation and degradation either in the form of the Mdm2 homodimer or Mdm2/MdmX heterodimer. The ubiquitin ligase activity of these complexes resides mainly in their respective RING finger domains and also requires adjacent C-terminal tails. So far, structural studies have failed to show significant differences between Mdm2 RING homodimers and Mdm2/MdmX RING heterodimers. Here, we report that not only the primary amino acid sequence, but also the length of the C-terminal tail of Mdm2 is highly conserved through evolution and plays an important role in Mdm2 activity toward p53. Mdm2 mutants with extended C termini do not ubiquitylate p53 despite being capable of forming Mdm2 homodimers through both RING-acidic domain and RING-RING interactions. All extended mutants also retained the ability to interact with MdmX, and this interaction led to reactivation of their E3 ubiquitin ligase activity. In contrast, only a subset of extended Mdm2 mutants was activated by the interaction with Mdm2 RING domain, suggesting that Mdm2 homodimers and Mdm2/MdmX heterodimers may not be structurally and functionally fully equivalent.  相似文献   

9.
Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity   总被引:12,自引:0,他引:12  
  相似文献   

10.
11.
Buschmann T  Fuchs SY  Lee CG  Pan ZQ  Ronai Z 《Cell》2000,101(7):753-762
Mdm2 is an E3 ubiquitin ligase for the p53 tumor suppressor protein. We demonstrate that Mdm2 is conjugated with SUMO-1 (sumoylated) at Lys-446, which is located within the RING finger domain and plays a critical role in Mdm2 self-ubiquitination. Whereas mutant Mdm2(K446R) is stabilized, it elicits increased degradation of p53 and concomitant inhibition of p53-mediated apoptosis. In vitro sumoylation of Mdm2 abrogates its self-ubiquitination and increases its ubiquitin ligase activity toward p53. Radiation caused a dose- and time-dependent decrease in the degree of Mdm2 SUMO-1 modification, which is inversely correlated with the levels of p53. Our results suggest that the maintenance of the intrinsic activity of a RING finger E3 ubiquitin ligase is sumoylation dependent and that reduced Mdm2 sumoylation in response to DNA damage contributes to p53 stability.  相似文献   

12.
The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes.  相似文献   

13.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   

14.
Caspase-2 is an evolutionarily conserved caspase, yet its biological function and cleavage targets are poorly understood. Caspase-2 is activated by the p53 target gene product PIDD (also known as LRDD) in a complex called the Caspase-2-PIDDosome. We show that PIDD expression promotes growth arrest and chemotherapy resistance by a mechanism that depends on Caspase-2 and wild-type p53. PIDD-induced Caspase-2 directly cleaves the E3 ubiquitin ligase Mdm2 at Asp 367, leading to loss of the C-terminal RING domain responsible for p53 ubiquitination. As a consequence, N-terminally truncated Mdm2 binds p53 and promotes its stability. Upon DNA damage, p53 induction of the Caspase-2-PIDDosome creates a positive feedback loop that inhibits Mdm2 and reinforces p53 stability and activity, contributing to cell survival and drug resistance. These data establish Mdm2 as a cleavage target of Caspase-2 and provide insight into a mechanism of Mdm2 inhibition that impacts p53 dynamics upon genotoxic stress.  相似文献   

15.
p53 ubiquitination: Mdm2 and beyond   总被引:12,自引:0,他引:12  
Brooks CL  Gu W 《Molecular cell》2006,21(3):307-315
Although early studies have suggested that the oncoprotein Mdm2 is the primary E3 ubiquitin ligase for the p53 tumor suppressor, an increasing amount of data suggests that p53 ubiquitination and degradation are more complex than once thought. The discoveries of MdmX, HAUSP, ARF, COP1, Pirh2, and ARF-BP1 continue to uncover the multiple facets of this pathway. There is no question that Mdm2 plays a pivotal role in downregulating p53 activities in numerous cellular settings. Nevertheless, growing evidence challenges the conventional view that Mdm2 is essential for p53 turnover.  相似文献   

16.
Genetic evidence has implicated both Mdm2 and MdmX as essential in negative regulation of p53. However, the exact role of MdmX in this Mdm2-dependent protein degradation is not well understood. Most, if not all, previous Mdm2 studies used GST-Mdm2 fusion proteins in the in vitro assays. Here, we show that the p53 polyubiquitination activity of GST-Mdm2 is conferred by the GST tag and non-GST-tagged Mdm2 only catalyzes monoubiquitination of p53 even at extremely high concentrations. We further demonstrate that MdmX is a potent activator of Mdm2, facilitating dose-dependent p53 polyubiquitination. This activation process requires the RING domains of both MdmX and Mdm2 proteins. The polyubiquitination activity of Mdm2/MdmX is Mdm2-dependent. Unlike Mdm2 or MdmX overexpression alone, co-overexpression of MdmX and Mdm2 consistently triggered p53 degradation in cells. Moreover, cellular polyubiquitination of p53 was only observable in the cytoplasm where both Mdm2 and MdmX are readily detectable. Importantly, RNAi knockdown of MdmX increased levels of endogenous p53 accompanied by reduced p53 polyubiquitination. In conclusion, our work has resolved a major confusion in the field derived from using GST-Mdm2 and demonstrated that MdmX is the cellular activator that converts Mdm2 from a monoubiquitination E3 ligase to a polyubiquitination E3 ligase toward p53. Together, our findings provide a biochemical basis for the requirement of both Mdm2 and MdmX in the dynamic regulation of p53 stability.  相似文献   

17.
The discovery that the single p53 gene encodes several different p53 protein isoforms has initiated a flurry of research into the function and regulation of these novel p53 proteins. Full-length p53 protein level is primarily regulated by the E3-ligase Mdm2, which promotes p53 ubiquitination and degradation. Here, we report that all of the novel p53 isoforms are ubiquitinated and degraded to varying degrees in an Mdm2-dependent and -independent manner, and that high-risk human papillomavirus can degrade some but not all of the novel isoforms, demonstrating that full-length p53 and the p53 isoforms are differentially regulated. In addition, we provide the first evidence that Mdm2 promotes the NEDDylation of p53β. Altogether, our data indicates that Mdm2 can distinguish between the p53 isoforms and modify them differently.  相似文献   

18.
The stability of the p53 protein is regulated by Mdm2. By acting as an E3 ubiquitin ligase, Mdm2 directs the ubiquitylation of p53 and its subsequent degradation by the 26S proteasome. In contrast, the Mdmx protein, although structurally similar to Mdm2, cannot ubiquitylate or degrade p53 in vivo. To ascertain which domains determine this functional difference between Mdm2 and Mdmx and consequently are essential for p53 ubiquitylation and degradation, we generated Mdm2-Mdmx chimeric constructs. Here we show that, in addition to a fully functional Mdm2 RING finger, an internal domain of Mdm2 (residues 202 to 302) is essential for p53 ubiquitylation. Strikingly, the function of this domain can be fulfilled in trans, indicating that the RING domain and this internal region perform distinct activities in the ubiquitylation of p53.  相似文献   

19.
20.
We have demonstrated previously that the oncoprotein Mdm2 has a ubiquitin ligase activity for the tumor suppressor p53 protein. In the present study, we characterize this ubiquitin ligase activity of Mdm2. We first demonstrate the ubiquitination of several p53 point mutants and deletion mutants by Mdm2. The point mutants, which cannot bind to Mdm2, are not ubiquitinated by Mdm2. The ubiquitination of the C-terminal deletion mutants, which contain so-called Mdm2-binding sites, is markedly decreased, compared with that of wild-type p53. The binding of Mdm2 to p53 is essential for ubiquitination, but p53's tertiary structure and/or C-terminal region may also be important for this reaction. DNA-dependent protein kinase is known to phosphorylate p53 on Mdm2-binding sites, where DNA damage induces phosphorylation, and p53 phosphorylated by this kinase is not a good substrate for Mdm2. This suggests that DNA damage-induced phosphorylation stabilizes p53 by inhibiting its ubiquitination by Mdm2. We further investigated whether the tumor suppressor p19(ARF) affects the ubiquitin ligase activity of Mdm2 for p53. The activity of p19(ARF)-bound Mdm2 was found to be lower than that of free Mdm2, suggesting that p19(ARF) promotes the stabilization of p53 by inactivating Mdm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号