首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Martin GG  Huang H  Atshaves BP  Binas B  Schroeder F 《Biochemistry》2003,42(39):11520-11532
Although liver fatty acid binding protein (L-FABP) is known to bind not only long chain fatty acid (LCFA) but also long chain fatty acyl CoA (LCFA-CoA), the physiological significance of LCFA-CoA binding has been questioned and remains to be resolved. To address this issue, the effect of L-FABP gene ablation on liver cytosolic LCFA-CoA binding, LCFA-CoA pool size, LCFA-CoA esterification, and potential compensation by other intracellular LCFA-CoA binding proteins was examined. L-FABP gene ablation resulted not only in loss of L-FABP but also in concomitant upregulation of two other intracellular LCFA-CoA binding proteins, acyl CoA binding protein (ACBP) and sterol carrier protein-2 (SCP-2), by 45 and 80%, respectively. Nevertheless, the soluble fraction from livers of L-FABP (-/-) mice bound 95% less radioactive oleoyl-CoA than wild-type L-FABP (+/+) mice. The intracellular LCFA-CoA binding protein fraction (Fraction III) from wild-type L-FABP (+/+) mice, isolated by gel permeation chromatography of liver soluble proteins, exhibited one high-affinity binding and several low-affinity binding sites for cis-parinaroyl-CoA, a naturally occurring fluorescent LCFA-CoA. In contrast, high-affinity LCFA-CoA binding was absent from Fraction III of L-FABP (-/-) mice. While L-FABP gene ablation did not alter liver LCFA-CoA pool size, LCFA-CoA acyl chains of L-FABP (-/-) mouse livers were enriched 2.1-fold in C16:1 and decreased 1.9-fold in C20:0 fatty acids. Finally, L-FABP gene ablation selectively increased the amount of LCFAs esterified into liver phospholipid > cholesteryl ester, while concomitantly decreasing the amount of fatty acids esterified into triglycerides by 40%. In summary, these data with L-FABP (-/-) mice demonstrated for the first time that L-FABP is a physiologically significant contributor to determining liver cytosolic LCFA-CoA binding capacity, LCFA-CoA acyl chain distribution, and esterified fatty acid distribution.  相似文献   

2.
3.
4.
5.
Although liver fatty acid binding protein (L-FABP) is known to enhance uptake and esterification of straight-chain fatty acids such as palmitic acid and oleic acid, its effects on oxidation and further metabolism of branched-chain fatty acids such as phytanic acid are not completely understood. The present data demonstrate for the first time that expression of L-FABP enhanced initial rate and average maximal oxidation of [2,3-3H] phytanic acid 3.5- and 1.5-fold, respectively. This enhancement was not due to increased [2,3-3H] phytanic acid uptake, which was only slightly stimulated (20%) in L-FABP expressing cells after 30 min. Similarly, L-FABP also enhanced the average maximal oxidation of [9,10-3H] palmitic acid 2.2-fold after incubation for 30 min. However, the stimulation of L-FABP on palmitic acid oxidation nearly paralleled its 3.3-fold enhancement of uptake. To determine effects of metabolism on fatty acid uptake, a non-metabolizable fluorescent saturated fatty acid, BODIPY-C16, was examined by laser scanning confocal microscopy (LSCM). L-FABP expression enhanced uptake of BODIPY-C16 1.7-fold demonstrating that L-FABP enhanced saturated fatty acid uptake independent of metabolism. Finally, L-FABP expression did not significantly alter [2,3-3H] phytanic acid esterification, but increased [9,10-3H] palmitic acid esterification 4.5-fold, primarily into phospholipids (3.7-fold) and neutral lipids (9-fold). In summary, L-FABP expression enhanced branched-chain phytanic acid oxidation much more than either its uptake or esterification. These data demonstrate a potential role for L-FABP in the peroxisomal oxidation of branched-chain fatty acids in intact cells.  相似文献   

6.
7.
While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity and metabolic syndrome. Consequently, mammals evolved fatty acid-binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15-member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP or FABP1), is expressed in very high levels (2–5% of cytosolic protein) in liver as well as in intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair fed a high-fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity.  相似文献   

8.
Despite the considerable beneficial effects of n-3 and n-6 very long chain polyunsaturated fatty acids (VLC-PUFAs), very little is known about the factors that regulate their uptake and intracellular distribution in living cells. This issue was addressed in cells expressing liver-type fatty acid-binding protein (L-FABP) by real time multiphoton laser scanning microscopy of novel fluorescent VLC-PUFAs containing a conjugated tetraene fluorophore near the carboxyl group and natural methylene-interrupted n-3 or n-6 grouping. The fluorescent VLC-PUFAs mimicked many properties of their native nonfluorescent counterparts, including uptake, distribution, and metabolism in living cells. The unesterified fluorescent VLC-PUFAs distributed either equally in nuclei versus cytoplasm (22-carbon n-3 VLC-PUFA) or preferentially to cytoplasm (20-carbon n-3 and n-6 VLC-PUFAs). L-FABP bound fluorescent VLC-PUFA with affinity and specificity similar to their nonfluorescent natural counterparts. Regarding n-3 and n-6 VLC-PUFA, L-FABP expression enhanced uptake into the cell and cytoplasm, selectively altered the pattern of fluorescent n-6 and n-3 VLC-PUFA distribution in cytoplasm versus nuclei, and preferentially distributed fluorescent VLC-PUFA into nucleoplasm versus nuclear envelope, especially for the 22-carbon n-3 VLC-PUFA, correlating with its high binding by L-FABP. Multiphoton laser scanning microscopy data showed for the first time VLC-PUFA in nuclei of living cells and suggested a model, whereby L-FABP facilitated VLC-PUFA targeting to nuclei by enhancing VLC-PUFA uptake and distribution into the cytoplasm and nucleoplasm.  相似文献   

9.
Nonenzymatic cytosolic fatty acid binding proteins (FABPs) are abundantly expressed in many animal tissues with high rates of fatty acid metabolism. No physiological role has been demonstrated for any FABP, although these proteins have been implicated in transport of free long-chain fatty acids (LCFAs) and protection against LCFA toxicity. We report here that mice lacking heart-type FABP (H-FABP) exhibit a severe defect of peripheral (nonhepatic, non-fat) LCFA utilization. In these mice, the heart is unable to efficiently take up plasma LCFAs, which are normally its main fuel, and switches to glucose usage. Altered plasma levels of LCFAs, glucose, lactate and beta-hydroxybutyrate are consistent with depressed peripheral LCFA utilization, intensified carbohydrate usage, and increased hepatic LCFA oxidation; these changes are most pronounced under conditions favoring LCFA oxidation. H-FABP deficiency is only incompletely compensated, however, causing acute exercise intolerance and, at old age, a localized cardiac hypertrophy. These data establish a requirement for H-FABP in cardiac intracellular lipid transport and fuel selection and a major role in metabolic homeostasis. This new animal model should be particularly useful for investigating the significance of peripheral LCFA utilization for heart function, insulin sensitivity, and blood pressure.  相似文献   

10.
Long-chain fatty acyl-CoA synthetase (FACS) catalyzes esterification of long-chain fatty acids (LCFAs) with coenzyme A (CoA), the first step in fatty acid metabolism. FACS has been shown to play a role in LCFA import into bacteria and implicated to function in mammalian cell LCFA import. In the present study, we demonstrate that FACS overexpression in fibroblasts increases LCFA uptake, and overexpression of both FACS and the fatty acid transport protein (FATP) have synergistic effects on LCFA uptake. To explore how FACS contributes to LCFA import, we examined the subcellular location of this enzyme in 3T3-L1 adipocytes which natively express this protein and which efficiently take up LCFAs. We demonstrate for the first time that FACS is an integral membrane protein. Subcellular fractionation of adipocytes by differential density centrifugation reveals immunoreactive and enzymatically active FACS in several membrane fractions, including the plasma membrane. Immunofluorescence studies on adipocyte plasma membrane lawns confirm that FACS resides at the plasma membrane of adipocytes, where it co-distributes with FATP. Taken together, our data support a model in which imported LCFAs are immediately esterified at the plasma membrane upon uptake, and in which FATP and FACS function coordinately to facilitate LCFA movement across the plasma membrane of mammalian cells.  相似文献   

11.
Huang H  Atshaves BP  Frolov A  Kier AB  Schroeder F 《Biochemistry》2005,44(30):10282-10297
Although studies in vitro and in yeast suggest that acyl-CoA binding protein ACBP may modulate long-chain fatty acyl-CoA (LCFA-CoA) distribution, its physiological function in mammals is unresolved. To address this issue, the effect of ACBP on liver LCFA-CoA pool size, acyl chain composition, distribution, and transacylation into more complex lipids was examined in transgenic mice expressing a higher level of ACBP. While ACBP transgenic mice did not exhibit altered body or liver weight, liver LCFA-CoA pool size increased by 69%, preferentially in saturated and polyunsaturated, but not monounsaturated, LCFA-CoAs. Intracellular LCFA-CoA distribution was also altered such that the ratio of LCFA-CoA content in (membranes, organelles)/cytosol increased 2.7-fold, especially in microsomes but not mitochondria. The increased distribution of specific LCFA-CoAs to the membrane/organelle and microsomal fractions followed the same order as the relative LCFA-CoA binding affinity exhibited by murine recombinant ACBP: saturated > monounsaturated > polyunsaturated C14-C22 LCFA-CoAs. Consistent with the altered microsomal LCFA-CoA level and distribution, enzymatic activity of liver microsomal glycerol-3-phosphate acyltransferase (GPAT) increased 4-fold, liver mass of phospholipid and triacylglyceride increased nearly 2-fold, and relative content of monounsaturated C18:1 fatty acid increased 44% in liver phospholipids. These effects were not due to the ACBP transgene altering the protein levels of liver microsomal acyltransferase enzymes such as GPAT, lysophosphatidic acid acyltransferase (LAT), or acyl-CoA cholesterol acyltransferase 2 (ACAT-2). Thus, these data show for the first time in a physiological context that ACBP expression may play a role in LCFA-CoA metabolism.  相似文献   

12.
Uptake of nonesterified long-chain fatty acids (LCFAs) into many cell types and organs such as liver, heart, intestine, and skeletal muscle occurs primarily through a saturable, protein-mediated mechanism. Membrane proteins that increase the uptake of LCFAs, such as FAT/CD36 and fatty acid transport proteins, represent significant therapeutic targets for the treatment of metabolic disorders, including type 2 diabetes. However, currently available methods for the quantification of LCFA uptake neither allow for real-time measurements of uptake kinetics nor are ideally suited for the development of LCFA uptake inhibitors in high-throughput screens. To address both problems, we developed a LCFA uptake assay using a fluorescently labeled fatty acid and a nontoxic cell-impermeable quenching agent that allows fatty acid transport to be measured in real time using fluorescence plate readers or standard fluorescence microscopy. With this assay, we faithfully reproduced known differentiation- and hormone-induced changes in LCFA uptake by 3T3-L1 cells and determined LCFA uptake kinetics with previously unobtainable temporal resolution. Applications of this novel assay should facilitate new insights into the biology of fatty acid uptake and provide new means for obesity-related drug discovery.  相似文献   

13.
14.
Because of the importance of long-chain fatty acids (LCFAs) as a myocardial energy substrate, myocardial LCFA metabolism has been of particular interest for the understanding of cardiac pathophysiology. Recently, by using radiolabeled LCFA analogues, myocardial LCFA metabolism has been clinically evaluated, which revealed a total defect of myocardial LCFA accumulation in a small number of subjects. The mechanism for the cellular LCFA uptake process is still disputable, but recent results suggest that fatty acid translocase (FAT)/CD36 is a transporter in the heart. In the present study, we analyzed mutations and protein expression of the FAT/CD36 gene in 47 patients who showed total lack of the accumulation of a radiolabeled LCFA analogue in the heart. All the patients carried two mutations in the FAT/CD36 gene, and expression of the FAT/CD36 protein was not detected on either platelet or monocyte membranes. Our results showed the link between mutations of the FAT/CD36 gene and a defect in the accumulation of LCFAs in the human heart.  相似文献   

15.
Our studies were conducted to explore the role of hepatic fatty acid-binding protein (L-FABP) in fatty acid transport to the nucleus. Purified rat L-FABP facilitated the specific interaction of [(3)H]oleic acid with the nuclei. L-FABP complexed with unlabeled oleic acid decreased the nuclear association of [(3)H]oleic acid:L-FABP; however, oleic acid-saturated bovine serum albumin (BSA) or fatty acid-free L-FABP did not. The peroxisome-proliferating agents LY171883, bezafibrate, and WY-14,643 were also effective competitors when complexed to L-FABP. Nuclease treatment did not affect the nuclear association of [(3)H]oleic acid:L-FABP; however, proteinase treatment of the nuclei abolished the binding. Nuclei incubated with fluorescein-conjugated L-FABP in the presence of oleic acid were highly fluorescent whereas no fluorescence was observed in reactions lacking oleic acid, suggesting that L-FABP itself was binding to the nuclei. The nuclear binding of FABP was concentration dependent, saturable, and competitive. LY189585, a ligand for L-FABP, also facilitated the nuclear binding of fluorescein-conjugated L-FABP, although it was less potent than oleic acid. A structural analog that does not bind L-FABP, LY163443, was relatively inactive in stimulating the nuclear binding. Potential interactions between L-FABP and nuclear proteins were analyzed by Far-Western blotting and identified a 33-kDa protein in the 500 mm NaCl extract of rat hepatocyte nuclei that bound strongly to biotinylated L-FABP. Oleic acid enhanced the interaction of L-FABP with the 33-kDa protein as well as other nuclear proteins.We propose that L-FABP is involved in communicating the state of fatty acid metabolism from the cytosol to the nucleus through an interaction with lipid mediators that are involved in nuclear signal transduction.  相似文献   

16.
The F-domain of rat HNF-4alpha1 has a crucial impact on the ligand binding affinity, ligand specificity and secondary structure of HNF-4alpha. (i) Fluorescent binding assays indicate that wild-type, full-length HNF-4alpha (amino acids 1-455) has high affinity (Kd=0.06-12 nm) for long chain fatty acyl-CoAs (LCFA-CoA) and low affinity (Kd=58-296 nm) for unesterified long chain fatty acids (LCFAs). LCFA-CoA binding was due to close molecular interaction as shown by fluorescence resonance energy transfer (FRET) from full-length HNF-4alpha tryptophan (FRET donor) to bound cis-parinaroyl-CoA (FRET acceptor), which yielded an intermolecular distance of 33 A, although no FRET to cis-parinaric acid was detected. (ii) Deleting the N-terminal A-D-domains, comprising the AF1 and DNA binding functions, only slightly affected affinities for LCFA-CoAs (Kd=0.9-4 nm) and LCFAs (Kd=93-581 nm). (iii) Further deletion of the F-domain robustly reduced affinities for LCFA-CoA and reversed ligand specificity (i.e. high affinity for LCFAs (Kd=1.5-32 nm) and low affinity for LCFA-CoAs (Kd=54-302 nm)). No FRET from HNF-4alpha-E (amino acids 132-370) tryptophan (FRET donor) to bound cis-parinaroyl-CoA (FRET acceptor) was detected, whereas an intermolecular distance of 28 A was calculated from FRET between HNF-4alpha-E and cis-parinaric acid. (iv) Circular dichroism showed that LCFA-CoA, but not LCFA, altered the secondary structure of HNF-4alpha only when the F-domain was present. (v) cis-Parinaric acid bound to HNF-4alpha with intact F-domain was readily displaceable by S-hexadecyl-CoA, a nonhydrolyzable thioether analogue of LCFA-CoAs. Truncation of the F-domain significantly decreased cis-parinaric acid displacement. Hence, the C-terminal F-domain of HNF-4alpha regulated ligand affinity, ligand specificity, and ligand-induced conformational change of HNF-4alpha. Thus, characteristics of F-domain-truncated mutants may not reflect the properties of full-length HNF-4alpha.  相似文献   

17.
Although sterol carrier protein-2 (SCP-2) stimulates sterol transfer in vitro, almost nothing is known regarding the identity of the putative cholesterol binding site. Furthermore, the interrelationship(s) between this SCP-2 ligand binding site and the recently reported SCP-2 long chain fatty acid (LCFA) and long chain fatty acyl-CoA (LCFA-CoA) binding site(s) remains to be established. In the present work, two SCP-2 ligand binding sites were identified. First, both [4-(13)C]cholesterol and 22-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (NBD-cholesterol) binding assays were consistent with a single cholesterol binding site in SCP-2. This ligand binding site had high affinity for NBD-cholesterol, K(d) = 4.15 +/- 0.71 nM. (13)C NMR-labeled ligand competition studies demonstrated that the SCP-2 high affinity cholesterol binding site also bound LCFA or LCFA-CoA. However, only the LCFA-CoA was able to effectively displace the SCP-2-bound [4-(13)C]cholesterol. Thus, the ligand affinities at this SCP-2 binding site were in the relative order cholesterol = LCFA-CoA > LCFA. Second, (13)C NMR studies demonstrated the presence of another ligand binding site on SCP-2 that bound either LCFA or LCFA-CoA but not cholesterol. Photon correlation spectroscopy was consistent with SCP-2 being monomeric in both liganded and unliganded states. In summary, both (13)C NMR and fluorescence techniques demonstrated for the first time that SCP-2 had a single high affinity binding site that bound cholesterol, LCFA, or LCFA-CoA. Furthermore, results with (13)C NMR supported the presence of a second SCP-2 ligand binding site that bound either LCFA or LCFA-CoA but not cholesterol. These data contribute to our understanding of a role for SCP-2 in both cellular cholesterol and LCFA metabolism.  相似文献   

18.
The presence of cysteine and methionine groups together with an ability to bind long-chain fatty acid (LCFA) oxidation products makes liver fatty acid binding protein (L-FABP) an attractive candidate against hepatocellular oxidative stress. In this report, we show that pharmacological treatment directed at modulating L-FABP level affected hepatocellular oxidant status. L-FABP expressing 1548-hepatoma cells, treated with dexamethasone or clofibrate, decreased and increased intracellular L-FABP levels, respectively. Oxidative stress was induced by H2O2 incubation or hypoxia–reoxygenation. The fluorescent marker, dichlorofluorescein (DCF), was employed to measure intracellular reactive oxygen species (ROS). Hepatocellular damage was assessed by lactate dehydrogenase (LDH) level. Dexamethasone treatment resulted in a significant increase in DCF fluorescence with higher LDH release compared to control cells. Clofibrate treatment, however, resulted in a significant decrease in both parameters (p < 0.05). Drug treatments did not affect cytosolic activites of glutathione peroxidase (GPx), superoxide dismutase (SOD), or catalase suggesting that the differences between treated and control cells may likely be associated with varying L-FABP levels. We conclude that L-FABP may act as an effective endogenous cytoprotectant against hepatocellular oxidative stress.  相似文献   

19.
The fatty acid transport proteins (FATP) and long-chain acyl coenzyme A synthetase (ACSL) proteins have been shown to play a role in facilitating long-chain fatty acid (LCFA) transport in mammalian cells under physiologic conditions. The involvement of both FATP and ACSL proteins is consistent with the model of vectorial acylation, in which fatty acid transport is coupled to esterification. This study was undertaken to determine whether the functions of these proteins are coordinated through a protein-protein interaction that might serve as a point of regulation for cellular fatty acid transport. We demonstrate for the first time that FATP1 and ACSL1 coimmunoprecipitate in 3T3-L1 adipocytes, indicating that these proteins form an oligomeric complex. The efficiency of FATP1 and ACSL1 coimmunoprecipitation is unaltered by acute insulin treatment, which stimulates fatty acid uptake, or by treatment with isoproterenol, which decreases fatty acid uptake and stimulates lipolysis. Moreover, inhibition of ACSL1 activity in adipocytes impairs fatty acid uptake, suggesting that esterification is essential for fatty acid transport. Together, our findings suggest that a constitutive interaction between FATP1 and ACSL1 contributes to the efficient cellular uptake of LCFAs in adipocytes through vectorial acylation.  相似文献   

20.
The Pseudomonas aeruginosa PsrA autorepressor has dual roles as a repressor of the fadBA5 β-oxidation operon and an activator of the stationary-phase sigma factor rpoS and exsCEBA operon of the type III secretion system (TTSS). Previously, we demonstrated that the repression of the fadBA5 operon by PsrA is relieved by long-chain fatty acids (LCFAs). However, the signal affecting the activation of rpoS and exsC via PsrA is unknown. In this study, microarray and gene fusion data suggested that LCFA (e.g. oleate) affected the expression of rpoS and exsC . DNA binding studies confirmed that PsrA binds to the rpoS and exsC promoter regions. This binding was inhibited by LCFA, indicating that LCFA directly affects the activation of these two genes through PsrA. LCFA decreased rpoS and exsC expression, resulting in increased N -(butyryl)- l -homoserine-lactone quorum sensing signal and decreased ExoS/T production respectively. Based on the crystal structure of PsrA, site-directed mutagenesis of amino acid residues, within the hydrophobic channel thought to accommodate LCFA, created two LCFA-non-responsive PsrA mutants. The binding and activation of rpoS and exsC by these PsrA mutants was no longer inhibited by LCFA. These data support a mechanistic model where LCFAs influence PsrA regulation to control LCFA metabolism and some virulence genes in P. aeruginosa .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号