首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell type-specific expression of a human histone H1 gene   总被引:6,自引:0,他引:6  
  相似文献   

2.
The accessory gland of the male Drosophila melanogaster plays a vital role in reproduction. This secretory organ synthesizes products that are transferred to the female and are necessary to elicit the proper physiological and behavioral responses in the female. The accessory gland is composed of two morphologically distinct secretory cell types, the main cells and the secondary cells. Previous studies identified some genes expressed in main cells or in all accessory gland cells. In this paper we use P-element mediated enhancer traps to examine gene expression in the accessory gland. We show that, in addition to genes expressed in main cells only or in all accessory gland secretory cells, there are genes expressed specifically in secondary cells. Each cell type is uniform in the expression of its genes. Our results demonstrate that the two cell types are not only morphologically distinct but also biochemically distinct. We also show that the two cell types differ in their regulation of gene expression in response to mating activity.  相似文献   

3.
We studied the cell type-specific expression of human beta-carotene 15,15'-mono-oxygenase (BCO1), an enzyme that catalyzes the first step in the conversion of dietary provitamin A carotenoids to vitamin A. Immunohistochemical analysis using two monoclonal antibodies against different epitopes of the protein revealed that BCO1 is expressed in epithelial cells in a variety of human tissues, including mucosa and glandular cells of stomach, small intestine, and colon, parenchymal cells in liver, cells that make up the exocrine glands in pancreas, glandular cells in prostate, endometrium, and mammary tissue, kidney tubules, and in keratinocytes of the squamous epithelium of skin. Furthermore, BCO1 is detected in steroidogenic cells in testis, ovary, and adrenal gland, as well as skeletal muscle cells. Epithelia in general are structures that are very sensitive to vitamin A deficiency, and although the extraintestinal function of BCO1 is unclear, the finding that the enzyme is expressed in all epithelia examined thus far leads us to suggest that BCO1 may be important for local synthesis of vitamin A, constituting a back-up pathway of vitamin A synthesis during times of insufficient dietary intake of vitamin A.  相似文献   

4.
5.
6.
7.
Cell type-specific expression of the Mas proto-oncogene in testis.   总被引:5,自引:0,他引:5  
The Mas proto-oncogene encodes a G-protein-coupled receptor with the common seven transmembrane domains and may be involved in the actions of angiotensins. Because Mas is highly expressed in testis, we investigated the cell type-specificity and the onset of expression of the gene in this organ. Using an RNase protection assay, it could be shown that neither whole testes nor cultured Sertoli and Leydig cells of 12-day-old mice express Mas mRNA. Mas expression is first detected in 18-day-old mice and thereafter increases continuously until 6 months of age. By in situ hybridization, the expression could be localized to Leydig cells and Sertoli cells, the signals being much more pronounced in the former. A weak signal was detected in primary spermatocytes. The strong ontogenetically controlled and cell type-specific expression of this membrane-bound receptor in testis implicates a role for the Mas proto-oncogene in testis maturation and function.  相似文献   

8.
9.
The symmetrically cleaving beta-carotene 15,15'-monooxygenase (BCO1) catalyzes the first step in the conversion of provitamin A carotenoids to vitamin A in the mucosa of the small intestine. This enzyme is also expressed in epithelia in a variety of extraintestinal tissues. The newly discovered beta-carotene 9',10'-monooxygenase (BCO2) catalyzes asymmetric cleavage of carotenoids. To gain some insight into the physiological role of BCO2, we determined the expression pattern of BCO2 mRNA and protein in human tissues. By immunohistochemical analysis it was revealed that BCO2 was detected in cell types that are known to express BCO1, such as epithelial cells in the mucosa of small intestine and stomach, parenchymal cells in liver, Leydig and Sertoli cells in testis, kidney tubules, adrenal gland, exocrine pancreas, and retinal pigment epithelium and ciliary body pigment epithelia in the eye. BCO2 was uniquely detected in cardiac and skeletal muscle cells, prostate and endometrial connective tissue, and endocrine pancreas. The finding that the BCO2 enzyme was expressed in some tissues and cell types that are not sensitive to vitamin A deficiency and where no BCO1 has been detected suggests that BCO2 may also be involved in biological processes other than vitamin A synthesis.  相似文献   

10.
11.
Tissue-specific expression of the human renin gene in transgenic mice   总被引:5,自引:0,他引:5  
Transgenic mice carrying human renin gene were produced by microinjection of 15 kilobases (kb) DNA molecules with up to 3 kb of 5'-flanking sequence and 1.2 kb of 3'-flanking sequence. The transgenes have been shown to be stably transmitted to progeny. It was revealed by RNase protection assay that the human renin gene in a transgenic mouse is expressed preferentially in the kidney. The human renin RNA was also detected at a small level in a variety of tissues such as brain, heart, lung, pancreas, spleen, stomach, testis, and thymus. The direct radioimmunoassay using a monoclonal antibody specific for the active site of human renin demonstrated the synthesis of human active renin in the transgenic mouse kidney. These results suggest that the human renin gene in the transgenic mouse is regulated in a tissue-specific manner.  相似文献   

12.
13.
The regulation of renin gene expression, the rate‐limiting enzyme of the system, is thought to be fundamental to the total system. Previously, we mapped six putative cis‐elements in the promoter region of the human renin gene with nuclear proteins from human chorionic cells and human renal cortex by DNase I protection assay (footprint A–F). Each footprint contains Ets motif like site (A), HOXñPBX recognition sequence (B), unknown sequence as DNA binding consensus (C), CRE (D), COUP‐TFII (ARP‐1) motif like site (E), and AGE3 like site (F). Footprint D has been characterized by means of functional studies as the genuine human renin gene CRE interacting with CREB in cooperation with the site of footprint B. To obtain further clues to the specific expression in the promoter region, these putative cis‐elements were conducted to a consensus‐specific binding assay to compare renin‐producing and non‐renin‐producing cells by EMSA and electromobility super‐shift assay. Different sequence‐specific DNA/protein binding was obtained among the different cell lines with footprint B site, with COUP‐TFII (ARP‐1) motif like site and possibly with footprint F site. The results implicate these putative cis‐elements and each corresponding trans‐factor in the specific expression of the human renin gene in the promoter region. Further functional characterization of these elements would provide important data for a better understanding of human renin gene expression. © 2004 Wiley‐Liss, Inc.  相似文献   

14.
15.
16.
Cell type-specific localization of human cardiac S1P receptors.   总被引:5,自引:0,他引:5  
Sphingosine 1-phosphate (S1P), which derives from the metabolism of sphingomyelin, is mainly synthesized, stored, and released from platelets after activation by physiological and pathophysiological events. S1P acts in cardiovascular tissues through cell surface G-protein-coupled receptors of the endothelial differentiation gene (EDG) family, i.e., EDG1, EDG3 and EDG5. The aim of the present study was to assess the precise distribution of EDG1, EDG3, and EDG5 receptors expressed in human cardiovascular tissues to investigate their respective physiological implication. When assessed by Northern blots, EDG1, EDG3, and EDG5 displayed wide expression levels in decreasing order, respectively. In particular, EDG3 was mainly detected in the aorta. Detailed analysis by in situ hybridization (ISH) and immunohistochemistry (IHC) revealed strong EDG1 expression in cardiomyocytes and in endothelial cells of cardiac vessels. In cardiomyocytes, the EDG1 receptor is likely to be co-expressed with EDG3 and EDG5, although EDG1 exhibits the most prominent expression pattern. Unlike EDG3 and EDG5, which are expressed in the smooth muscle cell layer of the human aorta, no signal corresponding to EDG1 expression could be detected in the aorta. Moreover, only EDG3 expression was also found in smooth muscle cells of cardiac vessels. The present results provide new insight into the expression pattern of S1P receptors in human cardiovascular tissues, indicating a differential pattern of expression for these receptors in human vessels.  相似文献   

17.
The tissues and organs of multicellular eukaryotes are frequently observed to comprise complex three-dimensional interspersions of different cell types. It is a reasonable assumption that different global patterns of gene expression are found within these different cell types. This review outlines general experimental strategies designed to characterize these global gene expression patterns, based on a combination of methods of transgenic fluorescent protein (FP) expression and targeting, of flow cytometry and sorting and of high-throughput gene expression analysis.  相似文献   

18.
A puzzling feature of the renin-angiotensin system during pregnancy is the appearance in the maternal circulation of a large increase in the concentration of prorenin and renin. The physiologic role of these changes is not understood. We determined that high levels of renin protein occur in the circulation of pregnant mice, thereby establishing the mouse as a valuable model for understanding gestation-induced changes in the renin-angiotensin system. We used the murine model to show that high levels of renin gene expression occur at the mother-fetus interface, first in maternal decidua and subsequently in placentas. These results were obtained using ICR mice that have 2 related renin genes, Ren1 and Ren2. We also examined renin gene expression in C57Bl/6 mice that have only the Ren1 gene. In these mice, very little renin gene expression was observed in placentas but instead was upregulated in kidneys during pregnancy. In both ICR and C57Bl/6 mice, there is an increase in renin protein in the maternal circulation during pregnancy. However, these mice differ with regard to gestation-induced sites of increased renin gene expression. These studies suggest that mice are a convenient and valuable model for studying renin gene expression during pregnancy.  相似文献   

19.
Cell type-specific expressions of c-ras gene products in the normal rat   总被引:1,自引:0,他引:1  
Expression of proteins encoded by the ras proto-oncogenes was examined immunohistochemically in formalin-fixed, paraffin-embedded tissues of the normal rat using anti-ras p21 antibodies generated against synthetic peptides. Cell type specific expressions of ras gene products were detected in distal tubules of kidney, megakaryocytes in spleen, neural cells in cerebrum, Purkinje cells in cerebellum, cells lining the pulmonary alveoli and cells in the epithelium of intestinal villi. Region specific expressions of the ras proteins were observed in spleen and thymus, where the ras proteins were detected in splenic nodules including germinal centers and thymic medulla, respectively. These findings suggest that the c-ras gene products in normal rat organs are expressed in specific cell-types within a tissue and may be associated with degree of cellular differentiation.  相似文献   

20.
Cell type-specific localization of sphingosine kinase 1a in human tissues.   总被引:6,自引:0,他引:6  
Cell type-specific localization of sphingosine kinase 1a (SPHK1a) in tissues was analyzed with a rabbit polyclonal antibody against the 16 C-terminal amino acids derived from the recently reported mouse cDNA sequence of SPHK1a. This antibody (anti-SPHK1a antibody) can react specifically with SPHK1a of mouse, rat, and human tissues. Utilizing its crossreactivity to human SPHK1a, the cell-specific localization of SPHK1a in human tissues was histochemically examined. Strong positive staining for SPHK1a was observed in the white matter in the cerebrum and cerebellum, the red nucleus and cerebral peduncle in the midbrain, the uriniferous tubules in the kidney, the endothelial cells in vessels of various organs, and in megakaryocytes and platelets. The lining cells of sinusoids in the liver and splenic cords in the spleen showed moderate staining. Columnar epithelia in the intestine and Leydig's cells in the testis showed weak staining patterns. In addition, TPA-treated HEL cells, a human leukemia cell line, showed a megakaryocytic phenotype accompanied with increases in immunostaining of both SPHK1a and SPHK enzyme activity, suggesting that SPHK1a may be a novel marker of megakaryocytic differentiation and that this antibody is also useful for in vitro study of differentiation models.(J Histochem Cytochem 49:845-855, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号