首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic cells are thought to move across supporting surfaces through a combination of coordinated processes: polarisation; extension of dynamic protrusions from a leading edge; adhesion-associated stabilisation of some protrusions; centripetal pulling against those leading adhesions; and de-adhesion at the rear. Gradients of extracellular ligands can be detected by cells and then used to guide them either towards the source (in the case of a chemoattractant) or away from the source (in the case of a chemorepellent)--such migration is termed chemotaxis. Recent work suggests that chemotaxis probably emerges from the ability of cells to spatially encode extracellular gradients of ligands, a process for which phosphoinositide 3'-kinase (PI3K) signals alone are insufficient, and to use that vectorial information to bias movement by enhancing the survival, and not the formation, of the protrusions that experience the greatest stimulation.  相似文献   

2.
Most metal ions are toxic to plants, even at low concentrations, despite the fact that some are essential for growth and play key roles in metabolism. The majority of metals induce the formation of reactive oxygen species, which require the synthesis of additional antoxidant compounds and enzymes for their removal. New techniques that have greatly improved the identification, localisation and quantification of metals within plant tissues have led to the science of metallomics. This advancement in knowledge should eventually allow the characterisation of plants used in the process of phytoremediation of soils contaminated with toxic metals.  相似文献   

3.
4.
In this work, the interaction between a synthetic analog of archaeal lipids and cholesterol was studied using Langmuir technique. The lipid, β-Mal(3)O(C(16+4))(2), contained phytanyl chains attached via two ether bonds to the sn-2 carbon of the glycerol backbone. The preliminary studies showed that monolayers formed with the pure lipid have a liquid-like character; here, a hypothesis that admixing cholesterol to β-Mal(3)O(C(16+4))(2) could confer a higher rigidity on the films was tested. To check this proposal, two-dimensional miscibility of cholesterol and β-Mal(3)O(C(16+4))(2) in monomolecular films was studied using surface pressure and surface potential measurements, as well as Brewster angle microscopy and polarization-modulation infrared reflection absorption spectroscopy. The stability of the monomolecular films was evaluated based on thermodynamics of mixing of cholesterol and β-Mal(3)O(C(16+4))(2). Atomic level information concerning the orientation of molecules and the degree of hydration of polar headgroups was obtained from molecular dynamics simulations.  相似文献   

5.
6.
Restless legs syndrome is a curious neurological disorder of unknown aetiology. A new study has found that Drosophila mutants in the fly homologue of a human gene, BTBD9, that has been implicated as a risk factor for restless legs display important features of the syndrome.  相似文献   

7.
8.
The study of population genetics of invasive species offers opportunities to investigate rapid evolutionary processes at work, and while the ecology of biological invasions has enjoyed extensive attention in the past, the recentness of molecular techniques makes their application in invasion ecology a fairly new approach. Despite this, molecular biology has already proved powerful in inferring aspects not only relevant to the evolutionary biologist but also to those concerned with invasive species management. Here, we review the different molecular markers routinely used in such studies and their application(s) in addressing different questions in invasion ecology. We then review the current literature on molecular genetic studies aimed at improving management and the understanding of invasive species by resolving of taxonomic issues, elucidating geographical sources of invaders, detecting hybridisation and introgression, tracking dispersal and spread and assessing the importance of genetic diversity in invasion success. Finally, we make some suggestions for future research efforts in molecular ecology of biological invasions.  相似文献   

9.
Griscelli syndrome (GS) is a rare autosomal recessive disorder caused by mutations in either the myosin VA (GS1), RAB27A (GS2) or melanophilin (GS3) genes. The three GS subtypes are commonly characterized by pigment dilution of the skin and hair, due to defects involving melanosome transport in melanocytes. Here, we review how detailed studies concerning GS have contributed to a better understanding of the molecular mechanisms involved in vesicle transport and membrane trafficking processes. Additionally, we demonstrate that the identification and biological analysis of novel disease‐causing mutations highlighted the functional importance of the RAB27A‐MLPH‐MYO5A tripartite complex in intracellular melanosome transport. As the small GTPase Rab27a is able to interact with multiple effectors, including Slp2‐a and Myrip, we report on their presumed role in melanosome transport. Furthermore, we summarize data suggesting that RAB27B and RAB27A are functionally redundant and hereby provide further insight into the pathogenesis of GS2. Finally, we discuss how the gathered knowledge about the RAB27A‐MLPH‐MYO5A tripartite complex can be translated into a possible therapeutic application to reduce (hyper)pigmentation of the skin.  相似文献   

10.
There has been a significant decline in the reproductive performance of dairy cattle in recent decades. Cows, take longer time to return to the oestrus after calving, have poorer conception rates, and show fewer signs of oestrus. Achieving good reproductive performance is an increasing challenge for the dairy producer. In this study we focus on understanding the overall biological phenomena associated with nutritional sub-fertility rather than the underlying multiplicity of physiological interactions (already described in a number of recent studies). These phenomena are important because they represent the natural adaptations of the animal for dealing with variations in the nutritional environment. They can also be used to monitor and modulate reproductive performance on-farm. There is an underlying trade-off between two aspects of reproduction: investment in the viability of the current calf and investment in future offspring. As the investment in, and viability of, the current calf is related to maternal milk production, we can expect that level of milk production per se has effects on subsequent reproductive performance (investment in future offspring). Lactating cows have a lower proportion of viable embryos, which are of poorer quality, than do non-lactating cows. The same applies to high- compared to medium-genetic merit cows. Another important biological property is the adaptive use of body reserves in support of reproduction. Orchestrated endocrine changes in pregnancy and lactation facilitate the deposition of body lipid during pregnancy and mobilisation in early lactation. When the cow fails to accumulate the reserves she needs to safeguard reproduction she delays committing to further reproductive investment. But how does the cow ‘know’ that she is failing in energy terms? We argue that the cow does this by ‘monitoring’ both the body fat mobilisation and body fatness. Excessive body fat mobilisation indicates that current conditions are worse than expected. Body fatness indicates the future ability of the cow to safeguard her reproductive investment is compromised. Both delay further reproductive commitment. The relationship between reproductive performance and; milk production as an index of maternal investment, body fatness as an index of ability to safeguard reproductive investment, and body fat mobilisation as an index of the current nutritional environment – are examined. Nutritional strategies that seek to modulate body mobilisation and the endocrine environment by use of glucogenic and lipogenic diets, and the use of in-line progesterone profiles to monitor reproductive status are then discussed in this biological context.  相似文献   

11.
12.
13.
Rab27a: A key to melanosome transport in human melanocytes   总被引:12,自引:0,他引:12  
Normal pigmentation depends on the uniform distribution of melanin-containing vesicles, the melanosomes, in the epidermis. Griscelli syndrome (GS) is a rare autosomal recessive disease, characterized by an immune deficiency and a partial albinism that has been ascribed to an abnormal melanosome distribution. GS maps to 15q21 and was first associated with mutations in the myosin-V gene. However, it was demonstrated recently that GS can also be caused by a mutation in the Rab27a gene. These observations prompted us to investigate the role of Rab27a in melanosome transport. Using immunofluorescence and immunoelectron microscopy studies, we show that in normal melanocytes Rab27a colocalizes with melanosomes. In melanocytes isolated from a patient with GS, we show an abnormal melanosome distribution and a lack of Rab27a expression. Finally, reexpression of Rab27a in GS melanocytes restored melanosome transport to dendrite tips, leading to a phenotypic reversion of the diseased cells. These results identify Rab27a as a key component of vesicle transport machinery in melanocytes.  相似文献   

14.
Intracellular transport by microtubule-dependent motors is crucial for neuronal survival and function. Recent advances reveal novel strategies for the regulation of transport and the attachment of motors to cargoes. Current findings also illustrate the importance of directed transport in neuronal biology, including microtubule-motor-dependent transduction of neurotrophic signals and axonal damage signal complexes. Furthermore, recent data implicating the dysfunction of microtubule-dependent transport in the cause and development of several neurodegenerative diseases provides evidence for the vital role of transport in neuronal and organismal function.  相似文献   

15.
16.

Background

Photosynthetic electron transport is performed by a chain of redox components that are electrochemically connected in series. Its efficiency depends on the balanced action of the photosystems and on the interaction with the dark reaction. Plants are sessile and cannot escape from environmental conditions such as fluctuating illumination, limitation of CO2 fixation by low temperatures, salinity, or low nutrient or water availability, which disturb the homeostasis of the photosynthetic process. Photosynthetic organisms, therefore, have developed various molecular acclimation mechanisms that maintain or restore photosynthetic efficiency under adverse conditions and counteract abiotic stresses. Recent studies indicate that redox signals from photosynthetic electron transport and reactive oxygen species (ROS) or ROS-scavenging molecules play a central role in the regulation of acclimation and stress responses.

Scope

The underlying signalling network of photosynthetic redox control is largely unknown, but it is already apparent that gene regulation by redox signals is of major importance for plants. Signalling cascades controlling the expression of chloroplast and nuclear genes have been identified and dissection of the different pathways is advancing. Because of the direction of information flow, photosynthetic redox signals can be defined as a distinct class of retrograde signals in addition to signals from organellar gene expression or pigment biosynthesis. They represent a vital signal of mature chloroplasts that report their present functional state to the nucleus. Here we describe possible problems in the elucidation of redox signalling networks and discuss some aspects of plant cell biology that are important for developing suitable experimental approaches.

Conclusions

The photosynthetic function of chloroplasts represents an important sensor that integrates various abiotic changes in the environment into corresponding molecular signals, which, in turn, regulate cellular activities to counterbalance the environmental changes or stresses.Key words: Photosynthesis, redox signals, gene expression, regulatory network, retrograde signalling, cross-talk, plastids, higher plants  相似文献   

17.
18.
Recent work provides strong evidence of the role of parasitic diseases as contributing predictors to the variability found in cephalopod growth and condition, from the molecular to population levels. Parasites (both micro and macro) impair the well-being of cephalopod populations by diminishing the nutrient absorption capabilities of infected animals. Parasites produce mechanical lysing of large areas of functional tissues and they also deplete energy stores, which are directed towards tissue repair and the host’s defence mechanisms. This review focuses on the impact of parasitic infection as an environmental stressor and thus as a source of uncertainty in cephalopod populations within an ecosystem-based fishery management (EBFM) model. An erratum to this article can be found at  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号