首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capacitative calcium entry revisited   总被引:34,自引:0,他引:34  
J W Putney 《Cell calcium》1990,11(10):611-624
  相似文献   

2.
In the phospholipase C signaling system, Ca(2+) is mobilized from intracellular stores by an action of inositol 1,4,5-trisphosphate. The depletion of intracellular calcium stores activates a calcium entry mechanism at the plasma membrane called capacitative calcium entry. The signal for activating the entry is unknown but likely involves either the generation or release, or both, from the endoplasmic reticulum of some diffusible signal. Recent research has focused on mammalian homologues of the Drosophila TRP protein as potential candidates for capacitative calcium entry channels. This review summarizes current knowledge about the nature of capacitative calcium entry signals, as well as the potential role of mammalian TRP proteins as capacitative calcium entry channel molecules.  相似文献   

3.
In nonexcitable cells, the predominant mechanism for regulated entry of Ca(2+) is capacitative calcium entry, whereby depletion of intracellular Ca(2+) stores signals the activation of plasma membrane calcium channels. A number of other regulated Ca(2+) entry pathways occur in specific cell types, however, and it is not know to what degree the different pathways interact when present in the same cell. In this study, we have examined the interaction between capacitative calcium entry and arachidonic acid-activated calcium entry, which co-exist in HEK293 cells. These two pathways exhibit mutual antagonism. That is, capacitative calcium entry is potently inhibited by arachidonic acid, and arachidonic acid-activated entry is inhibited by the pre-activation of capacitative calcium entry with thapsigargin. In the latter case, the inhibition does not seem to result from a direct action of thapsigargin, inhibition of endoplasmic reticulum Ca(2+) pumps, depletion of Ca(2+) stores, or entry of Ca(2+) through capacitative calcium entry channels. Rather, it seems that a discrete step in the pathway signaling capacitative calcium entry interacts with and inhibits the arachidonic acid pathway. The findings reveal a novel process of mutual antagonism between two distinct calcium entry pathways. This mutual antagonism may provide an important protective mechanism for the cell, guarding against toxic Ca(2+) overload.  相似文献   

4.
Harper MT  Poole AW 《Cell calcium》2011,50(4):351-358
Phosphatidylserine (PS)-exposing platelets accelerate coagulation at sites of vascular injury. PS exposure requires sustained Ca2+ signalling. Two distinct Ca2+ entry pathways amplify and sustain platelet Ca2+ signalling, but their relative importance in human platelets is not known. Here we examined the relative roles of store-operated Ca2+ entry (SOCE) and non-capacitative Ca2+ entry (NCCE) in thrombin-induced Ca2+ signalling and PS exposure by using two Ca2+ channel blockers. BTP-2 showed marked selectivity for SOCE over NCCE. LOE-908 specifically blocked NCCE under our conditions. Using these agents we found that SOCE is important at low thrombin concentrations whereas NCCE became increasingly important as thrombin concentration was increased. PS exposure was reduced by LOE-908, and only activated at thrombin concentrations that also activate NCCE. In contrast, BTP-2 had no effect on PS exposure. We suggest that SOCE amplifies and sustains Ca2+ signalling in response to low concentrations of thrombin whereas both NCCE and SOCE are important contributors to Ca2+ signalling at higher thrombin concentrations. However, despite being involved in Ca2+ signalling at high thrombin concentrations, SOCE is not important for thrombin-induced PS exposure in human platelets. This suggests that the route of Ca2+ entry is an important regulator of thrombin-induced PS exposure in platelets.  相似文献   

5.
Capacitative calcium entry: sensing the calcium stores   总被引:1,自引:0,他引:1  
A long-standing mystery in the cell biology of calcium channel regulation is the nature of the signal linking intracellular calcium stores to plasma membrane capacitative calcium entry channels. An RNAi-based screen of selected Drosophila genes has revealed that a calcium-binding protein, stromal interaction molecule (STIM), plays an essential role in the activation of these channels and may be the long sought sensor of calcium store content.  相似文献   

6.
The versatility of Ca(2+) as a messenger in multiple signaling events requires that the concentration of calcium ions within the cytoplasm be highly regulated. In particular, the release of calcium from intracellular stores must often be linked to calcium influx across the cell membrane. Capacitative calcium entry, whereby the depletion of intracellular Ca(2+) stores induces the influx of extracellular calcium, is a crucial element of concerted calcium signaling. Investigations into the phenomenon are contributing to a new appreciation for the organized cytoplasmic framework that supports calcium signaling.  相似文献   

7.
Mechanism of store-operated calcium entry   总被引:3,自引:0,他引:3  
Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.  相似文献   

8.
Neurons are a diverse cell type exhibiting hugely different morphologies and neurotransmitter specifications. Their distinctive phenotypes are established during differentiation from pluripotent precursor cells. The signalling pathways that specify the lineage down which neuronal precursor cells differentiate remain to be fully elucidated. Among the many signals that impinge on the differentiation of neuronal cells, cytosolic calcium (Ca2+) has an important role. However, little is known about the nature of the Ca2+ signals involved in fate choice in neuronal precursor cells, or their sources. In this study, we show that activation of either muscarinic or platelet-derived growth factor (PDGF) receptors induces a biphasic increase in cytosolic Ca2+ that consists of release from intracellular stores followed by sustained entry across the plasma membrane. For both agonists, the prolonged Ca2+ entry occurred via a store-operated pathway that was pharmacologically indistinguishable from Ca2+ entry initiated by thapsigargin. However, muscarinic receptor-activated Ca2+ entry was inhibited by siRNA-mediated knockdown of TRPC6, whereas Ca2+ entry evoked by PDGF was not. These data provide evidence for agonist-specific activation of molecularly distinct store-operated Ca2+ entry pathways, and raise the possibility of privileged communication between these Ca2+ entry pathways and downstream processes.  相似文献   

9.
The molecular identity of the signal coupling intracellular Ca(2+) store depletion to the activation of Ca(2+) entry has long resisted exposure. Two recent studies independently implicate the STIM protein family as essential components in this coupling. These data provide new impetus to resolve how store Ca(2+) content is sensed and communicated to store-operated Ca(2+) channels at the cell surface.  相似文献   

10.
A model for receptor-regulated calcium entry   总被引:51,自引:0,他引:51  
A model is proposed for the mechanism by which activation of surface membrane receptors causes sustained Ca2+ entry into cells from the extracellular space. Reassessment of previously published findings on the behavior of receptor-regulated intracellular Ca2+ pools leads to the conclusion that when such pools are empty, a pathway from the extracellular space to the pool is opened; conversely when the pool is filled, the pathway is closed and it becomes relatively stable to depletion by low Ca2+ media or chelating agents. The biphasic nature of agonist-activated Ca2+-mobilization is thus seen as an initial emptying of the intracellular Ca2+ pool by inositol (1,4,5) trisphosphate, followed by rapid entry of Ca2+ into the pool and, in the continued presence of inositol (1,4,5) trisphosphate, into the cytosol. On withdrawal of agonist, inositol (1,4,5) trisphosphate is then rapidly degraded, the pathway from the pool to the cytosol is closed, and rapid entry from the outside continues until the Ca2+ content of the pool reaches a level that inactivates Ca2+ entry. This capacitative model allows for Ca2+ release and Ca2+ entry to be controlled by a single messenger, inositol (1,4,5) trisphosphate.  相似文献   

11.
Activation of surface membrane receptors coupled to phospholipase C results in the generation of cytoplasmic Ca2+ signals comprised of both intracellular Ca2+ release, and enhanced entry of Ca2+ across the plasma membrane. A primary mechanism for this Ca2+ entry process is attributed to store-operated Ca2+ entry, a process that is activated by depletion of Ca2+ ions from an intracellular store by inositol 1,4,5-trisphosphate. Our understanding of the mechanisms underlying both Ca2+ release and store-operated Ca2+ entry have evolved from experimental approaches that include the use of fluorescent Ca2+ indicators and electrophysiological techniques. Pharmacological manipulation of this Ca2+ signaling process has been somewhat limited; but recent identification of key molecular players, STIM and Orai family proteins, has provided new approaches. Here we describe practical methods involving fluorescent Ca2+ indicators and electrophysiological approaches for dissecting the observed intracellular Ca2+ signal to reveal characteristics of store-operated Ca2+ entry, highlighting the advantages, and limitations, of these approaches.  相似文献   

12.
In a variety of cell types, activation of phospholipase C-linked receptors results in the generation of intracellular Ca2+ signals comprised of components of both intracellular Ca2+ release, and enhanced entry of Ca2+ across the plasma membrane. This entry of Ca2+ occurs by either of two general mechanisms: the release of stored Ca2+ can activate, by an unknown mechanism, store-operated channels in the plasma membrane, a process known as capacitative calcium entry. Alternatively, second messengers generated at the plasma membrane can activate Ca2+ channels more directly, a non-capacitative calcium entry process. This review summarizes current knowledge of the underlying signaling mechanisms and the nature of the channel molecules responsible for these two general categories of regulated Ca2+ entry.  相似文献   

13.
We studied a novel function of the presenilins (PS1 and PS2) in governing capacitative calcium entry (CCE), a refilling mechanism for depleted intracellular calcium stores. Abrogation of functional PS1, by either knocking out PS1 or expressing inactive PS1, markedly potentiated CCE, suggesting a role for PS1 in the modulation of CCE. In contrast, familial Alzheimer's disease (FAD)-linked mutant PS1 or PS2 significantly attenuated CCE and store depletion-activated currents. While inhibition of CCE selectively increased the amyloidogenic amyloid beta peptide (Abeta42), increased accumulation of the peptide had no effect on CCE. Thus, reduced CCE is most likely an early cellular event leading to increased Abeta42 generation associated with FAD mutant presenilins. Our data indicate that the CCE pathway is a novel therapeutic target for Alzheimer's disease.  相似文献   

14.
The presence of the capacitative Ca(2+) entry mechanism was investigated in porcine oocytes. In vitro-matured oocytes were treated with thapsigargin in Ca(2+)-free medium for 3 h to deplete intracellular calcium stores. After restoring extracellular calcium, a large calcium influx was measured by using the calcium indicator dye fura-2, indicating capacitative Ca(2+) entry. A similar divalent cation influx could also be detected with the Mn(2+)-quench technique after inositol 1,4,5-triphosphate-induced Ca(2+) release. In both cases, lanthanum, the Ca(2+) permeable channel inhibitor, completely blocked the influx caused by store depletion. Heterologous expression of Drosophila trp in porcine oocytes enhanced the thapsigargin-induced Ca(2+) influx. Polymerase chain reaction cloning using primers that were designed based on mouse and human trp sequences revealed that porcine oocytes contain a trp homologue. As in other cell types, the capacitative Ca(2+) entry mechanism might help in refilling the intracellular stores after the release of Ca(2+) from the stores. Further investigation is needed to determine whether the trp channel serves as the capacitative Ca(2+) entry pathway in porcine oocytes or is simply activated by the endogenous capacitative Ca(2+) entry mechanism and thus contributes to Ca(2+) influx.  相似文献   

15.
Cytosolic free calcium (Ca2+) is a second messenger regulating a wide variety of functions in blood cells, including adhesion, activation, proliferation and migration. Store-operated Ca2+ entry (SOCE), triggered by depletion of Ca2+ from the endoplasmic reticulum, provides a main mechanism of regulated Ca2+ influx in blood cells. SOCE is mediated and regulated by isoforms of the ion channel proteins ORAI and TRP, and the transmembrane Ca2+ sensors stromal interaction molecules (STIMs), respectively. This report provides an overview of the (patho)physiological importance of SOCE in blood cells implicated in thrombosis and thrombo-inflammation, i.e. platelets and immune cells. We also discuss the physiological consequences of dysregulated SOCE in platelets and immune cells and the potential of SOCE inhibition as a therapeutic option to prevent or treat arterial thrombosis as well as thrombo-inflammatory disease states such as ischemic stroke.  相似文献   

16.
Comment on: Thornton AM, et al. Aging 2011; 3:621-34.  相似文献   

17.
Capacitative calcium entry in the nervous system   总被引:6,自引:0,他引:6  
Putney JW 《Cell calcium》2003,34(4-5):339-344
Capacitative calcium entry is a process whereby the depletion of Ca(2+) from intracellular stores (likely endoplasmic or sarcoplasmic reticulum) activates plasma membrane Ca(2+) channels. Current research has focused on identification of capacitative calcium entry channels and the mechanism by which Ca(2+) store depletion activates the channels. Leading candidates for the channels are members of the transient receptor potential (TRP) superfamily, although no single gene or gene product has been definitively proven to mediate capacitative calcium entry. The mechanism for activation of the channels is not known; proposals fall into two general categories, either a diffusible signal released from the Ca(2+) stores when their Ca(2+) levels become depleted, or a more direct protein-protein interaction between constituents of the endoplasmic reticulum and the plasma membrane channels. Capacitative calcium entry is a major mechanism for regulated Ca(2+) influx in non-excitable cells, but recent research has indicated that this pathway plays an important role in the function of neuronal cells, and may be important in a number of neuropathological conditions. This review will summarize some of these more recent findings regarding the role of capacitative calcium entry in normal and pathological processes in the nervous system.  相似文献   

18.
A ubiquitous pathway for cellular Ca(2+) influx involves 'store-operated channels' that respond to depletion of intracellular Ca(2+) pools via an as yet unknown mechanism. Due to its wide-spread expression, store-operated Ca(2+) entry (SOCE) has been considered a principal route for Ca(2+) influx. However, recent evidence has suggested that alternative pathways, activated for example by lipid metabolites, are responsible for physiological Ca(2+) influx. It is not clear if these messenger-activated Ca(2+) entry routes exist in all cells and what interaction they have with SOCE. In the present study we demonstrate that HEK-293 cells and Saos-2 cells express an arachidonic acid (AA)-activated Ca(2+) influx pathway that is distinct from SOCE on the basis of sensitivity to pharmacological blockers and depletion of cellular cholesterol. We examined the functional interaction between SOCE and the arachidonate-triggered Ca(2+) influx (denoted non-SOCE). Both Ca(2+) entry routes could underlie substantial long-lasting Ca(2+) elevations. However, the two pathways could not operate simultaneously. With cells that had an on-going SOCE response, addition of arachidonate gave two profound effects. Firstly, it rapidly inhibited SOCE. Secondly, the mode of Ca(2+) influx switched to the non-SOCE mechanism. Addition of arachidonate to na?ve cells resulted in rapid activation of the non-SOCE pathway. However, this Ca(2+) entry route was very slowly engaged if the SOCE pathway was already operative. These data indicate that the SOCE and arachidonate-activated non-SOCE pathways interact in an inhibitory manner. We probed the plausible mechanisms by which these two pathways may communicate.  相似文献   

19.
2-Aminoethyl diphenylborinate (2-APB) is a well-known effector of the store-operated Ca2 + entry of several cell types such as immune cells, platelets and smooth muscle cells. 2-APB has a dual effect: potentiation at 1–5 μM and inhibition at > 30 μM. Unfortunately, it is also able to modify the activity of other Ca2 + transporters and, thus, cannot be used as a therapeutic tool to control the leukocyte activity in diseases like inflammation. Previously, we have shown that SOCE potentiation by 2-APB depends on the presence of the central boron-oxygen core (BOC) and that the phenyl groups determine the sensitivity of the molecule to inhibit and/or potentiate the SOCE.  相似文献   

20.
Capacitative Ca(2+) entry (CCE) refers to the influx of Ca(2+) through plasma membrane channels activated on depletion of endoplasmic-sarcoplasmic reticulum Ca(2+) stores. We utilized two Ca(2+)-sensitive dyes (one monitoring cytoplasmic free Ca(2+) and the other free Ca(2+) within the sarcoplasmic reticulum) to determine whether adult rat ventricular myocytes exhibit CCE. Treatments with inhibitors of the sarcoplasmic endoplasmic reticulum Ca(2+)-ATPases were not efficient in releasing Ca(2+) from stores. However, when these inhibitors were coupled with either Ca(2+) ionophores or angiotensin II (an agonist generating inositol 1,4,5 trisphosphate), depletion of stores was observed. This depletion was accompanied by a significant influx of extracellular Ca(2+) characteristic of CCE. CCE was also observed when stores were depleted with caffeine. This influx of Ca(2+) was sensitive to four inhibitors of CCE (glucosamine, lanthanum, gadolinium, and SKF-96365) but not to inhibitors of L-type channels or the Na(+)/Ca(2+) exchanger. In the whole cell configuration, an inward current of approximately 0.7 pA/pF at -90 mV was activated when a Ca(2+) chelator or inositol (1,4,5)-trisphosphate was included in the pipette or when Ca(2+) stores were depleted with a Ca(2+)-ATPase inhibitor and ionophore. The current was maximal at hyperpolarizing voltages and inwardly rectified. The channel was relatively permeant to Ca(2+) and Ba(2+) but only poorly to Mg(2+) or Mn(2+). Taken together, these data support the existence of CCE in adult cardiomyocytes, a finding with likely implications to physiological responses to phospholipase C-generating agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号