首页 | 本学科首页   官方微博 | 高级检索  
   检索      

春玉米-晚稻与早稻-晚稻种植模式碳足迹比较
引用本文:姜振辉,杨旭,刘益珍,林景东,吴杨潇影,杨京平.春玉米-晚稻与早稻-晚稻种植模式碳足迹比较[J].生态学报,2019,39(21):8091-8099.
作者姓名:姜振辉  杨旭  刘益珍  林景东  吴杨潇影  杨京平
作者单位:浙江大学环境与资源学院环境污染防治所, 杭州 310058,浙江大学环境与资源学院环境污染防治所, 杭州 310058,浙江大学环境与资源学院环境污染防治所, 杭州 310058,浙江大学环境与资源学院环境污染防治所, 杭州 310058,浙江大学环境与资源学院环境污染防治所, 杭州 310058,浙江大学环境与资源学院环境污染防治所, 杭州 310058
基金项目:国家重大研发计划(2016YFD0300203-4)
摘    要:量化作物生产的碳足迹有助于为农业生态系统温室气体减排提供理论依据。利用生命周期法研究了我国南方地区稻田春玉米-晚稻水旱轮作种植模式和早稻-晚稻连作种植模式下粮食生产的碳足迹,并定量分析粮食生产过程中各种碳排放源的相对贡献。结果表明,与早稻-晚稻的连作模式相比,春玉米-晚稻轮作模式的单位面积碳排放降低了6724 kg CO2-eq/hm2,单位产量的碳足迹降低了0.56 kg CO2-eq/kg。春玉米比早稻少排放6228 kg CO2-eq/hm2;与早稻-晚稻模式中晚稻碳排放相比,春玉米-晚稻轮作模式晚稻碳排放降低了497 kg CO2-eq/hm2。早稻-晚稻种植模式的碳足迹主要来源于甲烷(CH4),其碳排放为9776 kg CO2-eq/hm2(54.8%),氮肥生产和施用的碳排放为2871 kg CO2-eq/hm2(16.1%),灌溉电力消耗的碳排放2849 kg CO2-eq/hm2(16.0%)。春玉米-晚稻轮作模式的碳足迹主要来源于CH4的碳排放4442 kg CO2-eq/hm2(39.9%),氮肥生产和施用的碳排放2871 kg CO2-eq/hm2(25.8%),灌溉电力消耗的碳排放1508 kg CO2-eq/hm2(13.6%)。该模式中晚稻的碳足迹组成情况与春玉米-晚稻模式的碳足迹相似。但是,对于春玉米而言,其碳足迹主要来源氮肥生产和施用的碳排放1436 CO2-eq/hm2(50.1%),氧化亚氮(N2O)的碳排放为579 kg CO2-eq/hm2(20.2%),CH4的碳排放为378 CO2-eq/hm2(13.2%)。同时,相比于早稻-晚稻中晚稻的产量(6333 kg/hm2),春玉米-晚稻轮作模式下的晚稻产量(7270 kg/hm2)提高了14.8%。因此,引入春玉米-晚稻轮作模式有利于提升稻田生产力,降低稻田连作系统碳排放和碳足迹。

关 键 词:早稻-晚稻  春玉米-晚稻  碳足迹  甲烷  氮肥
收稿时间:2018/8/2 0:00:00
修稿时间:2019/6/4 0:00:00

Comparison of carbon footprint between spring maize-late rice and early rice-late rice cropping system
JIANG Zhenhui,YANG Xu,LIU Yizhen,LIN Jingdong,WU Yangxiaoying and YANG Jingping.Comparison of carbon footprint between spring maize-late rice and early rice-late rice cropping system[J].Acta Ecologica Sinica,2019,39(21):8091-8099.
Authors:JIANG Zhenhui  YANG Xu  LIU Yizhen  LIN Jingdong  WU Yangxiaoying and YANG Jingping
Institution:Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou 310058, China,Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou 310058, China,Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou 310058, China,Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou 310058, China,Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou 310058, China and Institute of Environment Pollution Control and Treatment, College of Environment and Resource Science, Zhejiang University, Hangzhou 310058, China
Abstract:Quantifying the carbon footprint of crop production can help provide a theoretical basis to mitigate greenhouse gas emissions in agro-ecosystem. In this study, the life cycle assessment was used to assess the carbon footprint of two cropping systems (early rice-late rice continuous cropping system and spring maize-late rice rotation systems) and quantitatively analyze the relative contribution of various carbon sources in grain production in paddy field of Southern China. The results showed that the spring maize-late rice rotation reduced the carbon emissions per unit area by 6724 kg CO2-eq/hm2 and the carbon footprint per unit yield by 0.56 kg CO2-eq/kg compared with the continuous cropping of early rice-late rice. The carbon emissions from the production of spring maize were less 6228 kg CO2-eq/hm2 than in early rice. The carbon emissions of late rice in spring maize-late rice rotation system were decreased by 497 kg CO2-eq/hm2, when compared with that in early rice-late rice system. The main components of carbon footprint in the early rice-late rice planting system were derived from the carbon emission of methane (CH4) from paddy field (9776kg CO2-eq/hm2, 54.8%), nitrogen fertilizer production and application (2871 kg CO2-eq/hm2, 16.1%), and electricity consumption (2849 kg CO2-eq/hm2, 16.0%). While the main part of carbon footprint came from the carbon emission of CH4 (4442 kg CO2-eq/hm2, 40.0%), nitrogen fertilizer production and application (2871 kg CO2-eq/hm2, 25.8%), and electricity consumption (1508 kg CO2-eq/hm2, 13.6%) in the spring maize-late rice rotation system. The composition of carbon footprint of late rice in this system were similar to that in the spring maize-late rice system. However, the main part of carbon footprints of spring maize were mainly derived from the carbon emission of nitrogen fertilizer production and application (1435 CO2-eq/hm2, 50.1%), nitrous oxide (579 kg CO2-eq/hm2, 20.2%), and CH4 (378 CO2-eq/hm2, 13.2%). Meanwhile, compared with the yield of late rice (6333 kg/hm2) in early rice-late rice cropping system, the yield of late rice (7271 kg/hm2) was increased in the spring maize-late rice rotation system. Accordingly, introducing spring maize-late rice rotation system is conducive to improving rice paddy productivity and mitigating carbon emission and carbon footprint in continuous rice systems.
Keywords:paddy-upland rotation  rice continuous cropping  carbon footprint  methane  nitrogen fertilizer
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号