首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitrogen dynamics of storm runoff in the riparian zone of a forested watershed
Authors:Alan R Hill
Institution:(1) Department of Geography, York University, Toronto, Ontario, M3J IP3, Canada
Abstract:The influence of storm runoff processes on stream nitrogen dynamics was investigated in a headwater riparian swamp on the Oak Ridges moraine in southern Ontario. Hydrologic data were combined with analysis of an isotopic tracer (180) and nitrogen (NH 4 + , NO 3 ) concentrations in saturation overland flow and stream discharge. Storm runoff was separated into its event and pre-event components using18O in order to examine the effect of water source on nitrogen chemistry. Laboratory experiments were also used to study nitrogen transformation associated with storm runoff-surface substrate interactions in the swamp. In most storms N03-N and NH4-N concentrations in the initial 3–4 mm throughfall increment were 10–20x and 20–100x higher respectively than stream base flow concentrations. Maximum stream N03-N concentrations were < 2x to 6x higher than base flow concentrations and preceded or coincided with peak stream discharge. Storm-to-storm variations in stream N03-N behaviour also occurred during the hydrograph recession phase. NH4-N concentrations attained an initial peak on the rising hydrograph limb, or at peak stream discharge. A second NH4-N increase occurred during the late recession phase 3–5 h after maximum stream discharge. Inorganic-N concentrations in surface runoff were similar to peak streamflow.The close agreement between observed N03-N concentrations and values predicted from a chemical mixing model indicate that stream N03-N variations were controlled mainly by the mixture of throughfall and groundwater in surface stormflow from the swamp. Laboratory experiments also indicated that N03-N in surface runoff behaved conservatively when mixed with swamp substrates. With the exception of the late hydrograph recession phase, observed stream NH4-N concentrations were much lower than concentrations predicted by the chemical mixing model. The rapid loss of NH4-N from mixtures of surface stormflow and swamp substrates in laboratory experiments and the absence of uptake in sterilized substrates indicated that NH4-N retention in surface storm runoff was due to biotic processes.
Keywords:ammonium  nitrate  riparian zone  stream chemistry  storm runoff  swamp
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号