首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1120篇
  免费   49篇
  国内免费   100篇
  2023年   10篇
  2022年   12篇
  2021年   11篇
  2020年   21篇
  2019年   26篇
  2018年   30篇
  2017年   25篇
  2016年   25篇
  2015年   17篇
  2014年   23篇
  2013年   62篇
  2012年   28篇
  2011年   47篇
  2010年   32篇
  2009年   33篇
  2008年   39篇
  2007年   48篇
  2006年   53篇
  2005年   50篇
  2004年   44篇
  2003年   37篇
  2002年   35篇
  2001年   33篇
  2000年   41篇
  1999年   42篇
  1998年   34篇
  1997年   21篇
  1996年   31篇
  1995年   19篇
  1994年   34篇
  1993年   31篇
  1992年   35篇
  1991年   29篇
  1990年   29篇
  1989年   22篇
  1988年   16篇
  1987年   23篇
  1986年   12篇
  1985年   21篇
  1984年   21篇
  1983年   6篇
  1982年   10篇
  1981年   6篇
  1980年   12篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1976年   5篇
  1975年   2篇
  1973年   3篇
排序方式: 共有1269条查询结果,搜索用时 15 毫秒
1.
2.

With the view of incorporating quaternary ammonium salts (QAs) in marine paints, nineteen of these were tested against a community of marine bacteria, at a temperature and salinity close to those of seawater. The concentration of QAs and the length of the main substituting chain are the main parameters affecting the growth and adhesion of bacteria, but the nature of (i) the other chains, (ii) the counter‐ion and (iii) the rings when inserted in the QA molecule also influenced the bacteria. Increasing the concentration of the QAs decreased the growth rate of the bacteria, the maximum cell density at the plateau and the rate of adhesion. The effect of increasing the length of the main chain depended on the range of carbon numbers. Below 7 carbon atoms, the growth rate was not significantly modified, but the numbers of cells at the plateau increased in contrast with the adhesion rate which decreased rapidly. Increasing the length of the chain to between 7 and 16 carbon atoms resulted in a decrease in the growth rate, a decrease and then a stabilisation in the numbers of cells at the plateau and no further change in the adhesion rate. Possibly an increase in growth rate, adhesion rate and in the numbers of cells at the plateau may occur above 16 carbon atoms. In contrast, the length of the other chains influenced positively the cell concentration at the plateau, and more generally the efficiency of QAs decreased substantially when these chains had the same numbers of carbon atoms. QAs with iodide as counter‐ion were more effective than those with chloride or bromide and phenyl was more effective than benzyl as rings inserted in QAs. The minimum inhibitory concentrations (MIC) were often very high if compared to standard methods with laboratory strains, and this can be tentatively explained by the dominance of Gram— bacteria in the community assayed, the development of resistant strains in the cultures used with time and the presence of organic matter in the culture medium.  相似文献   
3.
Bacterial ammonium transport   总被引:10,自引:0,他引:10  
  相似文献   
4.
5.
6.
The inhibition of ammonium uptake by nitrate in wheat   总被引:1,自引:1,他引:0  
  相似文献   
7.
8.
The present study was conducted to characterize the N‐metabolism of important European tree species with different degrees of flooding tolerance. The roots of Fagus sylvatica (sensitive to flooding), Quercus robur (moderately flood tolerant) and Populus tremula × P. alba (flood tolerant) saplings were exposed to different flooding regimes and N uptake, amino acid, protein and chlorophyll concentrations as well as gas exchange were measured. The effects of these treatments on the tree species varied distinctly. In general, the N metabolism of beech was severely affected whereas less impacts were observed on oaks and almost no effects on poplars. The concentrations of amino compounds, particularly of Asp, Asn, Glu and Gln, were lower in the roots of flooded trees than in controls. By contrast, γ‐amino butyric acid concentrations increased. Root protein concentrations remained unaffected in oak and poplar but decreased in beech in response to flooding. The concentrations of pigments remained unaffected by flooding in all tree species investigated. However, photosynthesis and transpiration were severely affected in beech but much less in oak and poplar. The data obtained show a clear correlation between the different flooding tolerances of the trees investigated and the impacts of flooding on N uptake and N metabolism.  相似文献   
9.
The activities of glutamine synthetase (GS) and glutamate synthase (GOGAT) in different leaves of field-grown spring barley were measured during the reproductive growth phase in 2 consecutive years. Concurrently, the contents of soluble ammonium ions and free amides in the leaves were determined. The studies were carried out to investigate the relationship between variations in these parameters and emission of NH3 from the plant foliage. GS and GOGAT activities declined very rapidly with leafage. The decline in enzyme activities was followed by an increase in soluble ammonium ions and amides in the leaf tissues. During the same period, about 75% of leaf and stem nitrogen was reallocated to the developing ear. The amount of NH3 volatilized from the foliage during the reproductive growth phase amounted to about 1% of the reallocated nitrogen. The experimental years were characterized by very favourable conditions for grain dry matter formation and for re-utilization of nitrogen mobilized from leaves and stems. Ammonia volatilization occurring under conditions with declining GS and GOGAT activities and increasing tissue concentrations of NH4+ may be useful in protecting the plant from accumulation of toxic NH3 and NH4+ concentrations in the tissues.  相似文献   
10.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号