首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1758篇
  免费   7篇
  国内免费   12篇
  2021年   8篇
  2020年   4篇
  2019年   9篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   49篇
  2014年   133篇
  2013年   186篇
  2012年   214篇
  2011年   243篇
  2010年   215篇
  2009年   32篇
  2008年   33篇
  2007年   40篇
  2006年   45篇
  2005年   25篇
  2004年   22篇
  2003年   33篇
  2002年   21篇
  2001年   19篇
  2000年   11篇
  1999年   19篇
  1998年   17篇
  1997年   18篇
  1996年   20篇
  1995年   16篇
  1994年   22篇
  1993年   17篇
  1992年   15篇
  1991年   12篇
  1990年   18篇
  1989年   23篇
  1988年   15篇
  1987年   17篇
  1986年   12篇
  1985年   7篇
  1984年   19篇
  1983年   18篇
  1982年   18篇
  1981年   26篇
  1980年   27篇
  1979年   18篇
  1978年   4篇
  1977年   9篇
  1976年   8篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1970年   2篇
排序方式: 共有1777条查询结果,搜索用时 62 毫秒
1.
 The five known nickel-dependent enzymes include urease, hydrogenase, carbon monoxide dehydrogenase (and CO dehydrogenase/acetyl-coenzyme A synthase), methyl-S–coenzyme M reductase, and one class of superoxide dismutase. Consistent with their disparate functions, these Ni enzymes have distinct metallocenter structures that vary in Ni coordination geometry, number and types of metals, and the presence of additional components. Sophisticated cellular Ni processing systems have been devised to allow for specific and functional incorporation of Ni into these proteins. This review highlights several themes that are common to the enzyme activation processes and summarizes current concepts related to the enzyme-specific Ni assembly pathways. Received, accepted: 3 April 1997  相似文献   
2.
In frog skin, tachykinins stimulate ion transport by interaction with NK1-like receptors. The structural requirements of the peptide are the presence of the C-terminal sequence Phe-X-Gly-Leu-Met-NH2 and at least one Pro residue in the N-terminal sequence. In this paper, we demonstrate that the C-terminal amino acid must be amidated but it can be different from Met, and that the sequence cannot be longer or shorter than 11–12 amino acids. Unexpectedly, Ranamargarin (14 amino acids, no Pro residue) increased the short circuit current value by 48 ± 0.3%. On the basis of considerable experimental evidence, we suggest that Ranamargarin interacts with a receptor different from those of other tachykinins.  相似文献   
3.
Transport of GABA at the Blood-CSF Interface   总被引:2,自引:1,他引:1  
Abstract: The entry of GABA into cerebrospinal fluid (CSF) was studied in dogs anesthetized with pentobarbital and relaxed with suxamethonium. GABA was administered intravenously as a priming dose and subsequent maintenance infusion to compensate for the rapid elimination of the amino acid. Steady state concentrations of GABA in CSF were reached between 10 and 60 min after injection, the rate of entry tending to decrease with increasing plasma levels. During steady state conditions CSF concentrations showed great interin-dividual differences and varied between 0.03 and 5.1% of those in plasma. Probenecid and sodium valproate considerably enhanced the CSF/plasma concentration ratio of GABA. When GABA was directly injected into the liquor space, probenecid slowed down the elimination of GABA from CSF. The results suggest a transport of GABA into and out of CSF, the outward transport being inhibited by probenecid and sodium valproate.  相似文献   
4.
The human blood-brain barrier glucose transport protein (GLUT1) forms homodimers and homotetramers in detergent micelles and in cell membranes, where the GLUT1 oligomeric state determines GLUT1 transport behavior. GLUT1 and the neuronal glucose transporter GLUT3 do not form heterocomplexes in human embryonic kidney 293 (HEK293) cells as judged by co-immunoprecipitation assays. Using homology-scanning mutagenesis in which GLUT1 domains are substituted with equivalent GLUT3 domains and vice versa, we show that GLUT1 transmembrane helix 9 (TM9) is necessary for optimal association of GLUT1-GLUT3 chimeras with parental GLUT1 in HEK cells. GLUT1 TMs 2, 5, 8, and 11 also contribute to a less abundant heterocomplex. Cell surface GLUT1 and GLUT3 containing GLUT1 TM9 are 4-fold more catalytically active than GLUT3 and GLUT1 containing GLUT3 TM9. GLUT1 and GLUT3 display allosteric transport behavior. Size exclusion chromatography of detergent solubilized, purified GLUT1 resolves GLUT1/lipid/detergent micelles as 6- and 10-nm Stokes radius particles, which correspond to GLUT1 dimers and tetramers, respectively. Studies with GLUTs expressed in and solubilized from HEK cells show that HEK cell GLUT1 resolves as 6- and 10-nm Stokes radius particles, whereas GLUT3 resolves as a 6-nm particle. Substitution of GLUT3 TM9 with GLUT1 TM9 causes chimeric GLUT3 to resolve as 6- and 10-nm Stokes radius particles. Substitution of GLUT1 TM9 with GLUT3 TM9 causes chimeric GLUT1 to resolve as a mixture of 6- and 4-nm particles. We discuss these findings in the context of determinants of GLUT oligomeric structure and transport function.  相似文献   
5.
The evolutionarily broad family nucleobase-cation symporter-2 (NCS2) encompasses transporters that are conserved in binding site architecture but diverse in substrate selectivity. Putative purine transporters of this family fall into one of two homology clusters: COG2233, represented by well studied xanthine and/or uric acid permeases, and COG2252, consisting of transporters for adenine, guanine, and/or hypoxanthine that remain unknown with respect to structure-function relationships. We analyzed the COG2252 genes of Escherichia coli K-12 with homology modeling, functional overexpression, and mutagenesis and showed that they encode high affinity permeases for the uptake of adenine (PurP and YicO) or guanine and hypoxanthine (YjcD and YgfQ). The two pairs of paralogs differ clearly in their substrate and ligand preferences. Of 25 putative inhibitors tested, PurP and YicO recognize with low micromolar affinity N6-benzoyladenine, 2,6-diaminopurine, and purine, whereas YjcD and YgfQ recognize 1-methylguanine, 8-azaguanine, 6-thioguanine, and 6-mercaptopurine and do not recognize any of the PurP ligands. Furthermore, the permeases PurP and YjcD were subjected to site-directed mutagenesis at highly conserved sites of transmembrane segments 1, 3, 8, 9, and 10, which have been studied also in COG2233 homologs. Residues irreplaceable for uptake activity or crucial for substrate selectivity were found at positions occupied by similar role amino acids in the Escherichia coli xanthine- and uric acid-transporting homologs (XanQ and UacT, respectively) and predicted to be at or around the binding site. Our results support the contention that the distantly related transporters of COG2233 and COG2252 use topologically similar side chain determinants to dictate their function and the distinct purine selectivity profiles.  相似文献   
6.
Transmembrane stretch M2C from the bacterial K+-translocating protein KtrB is unusually long. In its middle part, termed M2C2, it contains several small and polar amino acids. This region is flanked by the two α-helices M2C1 and M2C3 and may form a flexible gate at the cytoplasmic side of the membrane controlling K+ translocation. In this study, we provide experimental evidence for this notion by using continuous wave and pulse EPR measurements of single and double spin-labeled cysteine variants of KtrB. Most of the spin-labeled residues in M2C2 were shown to be immobile, pointing to a compact structure. However, the high polarity revealed for the microenvironment of residue positions 317, 318, and 327 indicated the existence of a water-accessible cavity. Upon the addition of K+ ions, M2C2 residue Thr-318R1 (R1 indicates the bound spin label) moved with respect to M2B residue Asp-222R1 and M2C3 residue Val-331R1 but not with respect to M2C1 residue Met-311R1. Based on distances determined between spin-labeled residues of double-labeled variants of KtrB in the presence and absence of K+ ions, structural models of the open and closed conformations were developed.  相似文献   
7.
Addition of a metabolizable substrate (glucose, ethanol and, to a degree, trehalose) to non-growing baker's yeast cells causes a boost of protein synthesis, reaching maximum rate 20 min after addition of glucose and 40–50 min after ethanol or trehalose addition. The synthesis involves that of transport proteins for various solutes which appear in the following sequence: H+, l-proline, sulfate, l-leucine, phosphate, α-methyl-d-glucoside, 2-aminoisobutyrate. With the exception of the phosphate transport system, the Kt of the synthesized systems is the same as before stimulation. Glucose is usually the best stimulant, but ethanol matches it in the case of sulfate and exceeds it in the case of proline. This may be connected with ethanol's stimulating the synthesis of transport proteins both in mitochondria and in the cytosol while glucose acts on cytosolic synthesis alone. The stimulation is often repressed by ammonium ions (leucine, proline, sulfate, H+), by antimycin (proline, trehalose, sulfate, H+), by iodoacetamide (all systems tested), and by anaerobic preincubation (leucine, proline, trehalose, sulfate). It is practically absent in a respiration-deficient petite mutant, only little depressed in the op1 mutant lacking ADP/ATP exchange in mitochondria, but totally suppressed (with the exception of transport of phosphate) in a low-phosphorus strain. The addition of glucose causes a drop in intracellular inorganic monophosphate by 30%, diphosphate by 45%, ATP by 70%, in total amino acids by nearly 50%, in transmembrane potential (absolute value) by about 50%, an increase of high-molecular-weight polyphosphate by 65%, of total cAMP by more than 100%, in the endogenous respiration rate by more than 100%, and a change of intracellular pH from 6.80 to 7.05. Ethanol caused practically no change in ATP, total amino acids, endogenous respiration, intracellular pH or transmembrane potential; a slight decrease in inorganic monophosphate and diphosphate and a sizeable increase in high-molecular-weight polyphosphate. The synthesis of the various transport proteins thus appears to draw its energy from different sources and with different susceptibility to inhibitors. It is much more stimulated in facultatively aerobic species (Saccharomyces cerevisiae, Endomyces magnusii) than in strictly aerobic ones (Rhodotorula glutinis, Candida parapsilosis) where an inhibition of transport activity is often observed after preincubation with metabolizable substrates.  相似文献   
8.
Active Transport of Nicotine by the Isolated Choroid Plexus In Vitro   总被引:2,自引:1,他引:1  
Abstract: In vitro , the transport of [14C]nicotine into the isolated choroid plexus, the anatomical locus of the blood–CSF barrier, was studied. The isolated rabbit choroid plexus accumulated [14C]nicotine by two processes: an active saturable transport process and a nonsaturable process. The [14C]nicotine accumulation process by choroid plexus was not due to binding or intracellular metabolism of the [14C]nicotine. The [14C]nicotine accumulation process in isolated choroid plexus was inhibited by weak bases, including tolazoline and lidocaine, but not by the weak acid probenecid. The accumulation process was decreased 60% by iodoacetate and dinitrophenol and by low temperatures. These results are consistent with previous autoradiographic evidence showing the choroid plexus concentrated [14C]nicotine in vivo , and suggest that the choroid plexus may transfer nicotine between blood and CSF in vivo .  相似文献   
9.
Iron is an essential element for diverse biological functions. In mammals, the majority of iron is enclosed within a single prosthetic group: heme. In metazoans, heme is synthesized via a highly conserved and coordinated pathway within the mitochondria. However, iron is acquired from the environment and subsequently assimilated into various cellular pathways, including heme synthesis. Both iron and heme are toxic but essential cofactors. How is iron transported from the extracellular milieu to the mitochondria? How are heme and heme intermediates coordinated with iron transport? Although recent studies have answered some questions, several pieces of this intriguing puzzle remain unsolved.  相似文献   
10.
Pattern formation mechanisms in developing organisms determine cellular differentiation and function. However, the components that interact during the manifestation of a spatial pattern are in general unknown. Characean algae represent a model system to study pattern formation. These algae develop alternating acid and alkaline transport domains that influence the pattern of growth. In the present study, it will be demonstrated that a diffusion mechanism is implicated in acid and alkaline domain formation and this growth pattern. Experiments on the characean growth pattern were performed that resulted in pronounced, however, unpredictable modifications in the original pattern. A major component involved in this pattern-forming mechanism emerged from the nonlinear kinetics of the H+-ATPase that is located in the plasma membrane of these algae. Based on these kinetics, a mathematical model was developed and numerically analyzed. As a result, the contribution of a diffusional component to the characean acid/alkaline pattern appeared most likely.This work was supported by the Deutsche Forschungsgemeinschaft (grant #571 1/1) to JF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号