首页 | 本学科首页   官方微博 | 高级检索  
   检索      


THE EVOLUTION OF PHENOTYPIC CORRELATIONS AND “DEVELOPMENTAL MEMORY”
Authors:Richard A Watson  Günter P Wagner  Mihaela Pavlicev  Daniel M Weinreich  Rob Mills
Institution:1. Natural Systems Group, ECS/Institute for Life Sciences/Institute for Complex Systems Simulation, University of Southampton, , Southampton, SO17 1BJ United Kingdom;2. Ecology and Evolutionary Biology, Yale University, , Connecticut, 06477;3. Theoretical Biology, University of Vienna, , Vienna, Austria;4. Ecology and Evolutionary Biology/Center for Computational Molecular Biology, Brown University, , Providence, Rhode Island;5. ECS, University of Southampton, , Southampton, SO17 1BJ United Kingdom
Abstract:Development introduces structured correlations among traits that may constrain or bias the distribution of phenotypes produced. Moreover, when suitable heritable variation exists, natural selection may alter such constraints and correlations, affecting the phenotypic variation available to subsequent selection. However, exactly how the distribution of phenotypes produced by complex developmental systems can be shaped by past selective environments is poorly understood. Here we investigate the evolution of a network of recurrent nonlinear ontogenetic interactions, such as a gene regulation network, in various selective scenarios. We find that evolved networks of this type can exhibit several phenomena that are familiar in cognitive learning systems. These include formation of a distributed associative memory that can “store” and “recall” multiple phenotypes that have been selected in the past, recreate complete adult phenotypic patterns accurately from partial or corrupted embryonic phenotypes, and “generalize” (by exploiting evolved developmental modules) to produce new combinations of phenotypic features. We show that these surprising behaviors follow from an equivalence between the action of natural selection on phenotypic correlations and associative learning, well‐understood in the context of neural networks. This helps to explain how development facilitates the evolution of high‐fitness phenotypes and how this ability changes over evolutionary time.
Keywords:Adaptation  associative learning  evolvability  evo‐devo
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号