首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   128篇
  国内免费   18篇
  2023年   3篇
  2022年   11篇
  2021年   15篇
  2020年   29篇
  2019年   27篇
  2018年   25篇
  2017年   36篇
  2016年   51篇
  2015年   58篇
  2014年   85篇
  2013年   82篇
  2012年   59篇
  2011年   50篇
  2010年   36篇
  2009年   70篇
  2008年   72篇
  2007年   56篇
  2006年   47篇
  2005年   49篇
  2004年   41篇
  2003年   41篇
  2002年   29篇
  2001年   12篇
  2000年   17篇
  1999年   20篇
  1998年   23篇
  1997年   20篇
  1996年   26篇
  1995年   25篇
  1994年   19篇
  1993年   18篇
  1992年   15篇
  1991年   7篇
  1990年   8篇
  1989年   8篇
  1988年   12篇
  1987年   10篇
  1986年   7篇
  1985年   10篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1978年   4篇
  1977年   6篇
  1976年   2篇
  1974年   2篇
  1972年   3篇
排序方式: 共有1276条查询结果,搜索用时 171 毫秒
1.
Color induction in the honeybee is investigated in color discrimination experiments. An individual bee walks in a dark arena and is trained to a self-luminant stimulus presented from below. In the dual-choice tests the dark background is replaced by a colored induction stimulus. Choice behavior is recorded by TV camera and analyzed by computer. Successive color induction is separated from simultaneous induction by analysis of the walking paths. Only successive color induction occurs. Simultaneous effects are not observed. That is a stimulus acts as a color inducing stimulus only when the bee crosses this stimulus. Thus, the color perceived by a given eye region is found to be dependent on the viewing history, but not on the stimuli presented simultaneously on neighboring parts of the retina. Color induction in the honeybee described in terms of selective sensitivity decrease (adaptation) does not explain all behavioral effects induced by the stimulus. The time course of successive color induction is calculated from the exposure times to the induction stimulus and from the choice behavior. The data suggest that color induction is complete after a few seconds. Photoreceptor adaptation is sufficient to explain the observed time course.  相似文献   
2.
Early generations of hybrids can express both genetic incompatibilities and phenotypic novelty. Insights into whether these conflicting interactions between intrinsic and extrinsic selection persist after a few generations of recombination require experimental studies. To address this question, we use interpopulation crosses and recombinant inbred lines (RILs) of the copepod Tigriopus californicus, and focus on two traits that are relevant for the diversification of this species: survivorship during development and tolerance to thermal stress. Experimental crosses between two population pairs show that most RILs between two heat‐tolerant populations show enhanced tolerance to temperatures that are lethal to the respective parentals, whereas RILs between a heat‐tolerant and a heat‐sensitive population are intermediate. Although interpopulation crosses are affected by intrinsic selection at early generational hybrids, most of the sampled F9 RILs have recovered fitness to the level of their parentals. Together, these results suggest that a few generations of recombination allows for an independent segregation of the genes underlying thermal tolerance and cytonuclear incompatibilities, permitting certain recombinant lineages to survive in niches previously unused by parental taxa (i.e., warmer thermal environments) without incurring intrinsic selection.  相似文献   
3.
Although metamorphosis is widespread in the animal kingdom, several species have evolved life-cycle modifications to avoid complete metamorphosis. Some species, for example, many salamanders and newts, have deleted the adult stage via a process called paedomorphosis. Others, for example, some frog species and marine invertebrates, no longer have a distinct larval stage and reach maturation via direct development. Here we study which ecological conditions can lead to the loss of metamorphosis via the evolution of direct development. To do so, we use size-structured consumer-resource models in conjunction with the adaptive-dynamics approach. In case the larval habitat deteriorates, individuals will produce larger offspring and in concert accelerate metamorphosis. Although this leads to the evolutionary transition from metamorphosis to direct development when the adult habitat is highly favorable, the population will go extinct in case the adult habitat does not provide sufficient food to escape metamorphosis. With a phylogenetic approach we furthermore show that among amphibians the transition of metamorphosis to direct development is indeed, in line with model predictions, conditional on and preceded by the evolution of larger egg sizes.  相似文献   
4.
Species with seemingly identical morphology but with distinct genetic differences are abundant in the marine environment and frequently co‐occur in the same habitat. Such cryptic species are typically delineated using a limited number of mitochondrial and/or nuclear marker genes, which do not yield information on gene order and gene content of the genomes under consideration. We used next‐generation sequencing to study the composition of the mitochondrial genomes of four sympatrically distributed cryptic species of the Litoditis marina species complex (PmI, PmII, PmIII, and PmIV). The ecology, biology, and natural occurrence of these four species are well known, but the evolutionary processes behind this cryptic speciation remain largely unknown. The gene order of the mitochondrial genomes of the four species was conserved, but differences in genome length, gene length, and codon usage were observed. The atp8 gene was lacking in all four species. Phylogenetic analyses confirm that PmI and PmIV are sister species and that PmIII diverged earliest. The most recent common ancestor of the four cryptic species was estimated to have diverged 16 MYA. Synonymous mutations outnumbered nonsynonymous changes in all protein‐encoding genes, with the Complex IV genes (coxI‐III) experiencing the strongest purifying selection. Our mitogenomic results show that morphologically similar species can have long evolutionary histories and that PmIII has several differences in genetic makeup compared to the three other species, which may explain why it is better adapted to higher temperatures than the other species.  相似文献   
5.
  • There is growing interest in harnessing the genetic and adaptive diversity of crop wild relatives to improve drought resilience of elite cultivars. Rainfall gradients exert strong selection pressure on both natural and agricultural ecosystems. Understanding plant responses to these facilitates crop improvement.
  • Wild and domesticated narrow‐leafed lupin (NLL) collected along Mediterranean terminal drought stress gradients was evaluated under contrasting reproductive phase water supply in controlled field, glasshouse and cabinet studies. Plant phenology, growth and productivity, water use and stress responses were measured over time.
  • There is an integrated suite of adaptive changes along rainfall gradients in NLL. Low rainfall ecotypes flower earlier, accumulate lower seed numbers, biomass and leaf area, and have larger root:shoot ratios than high rainfall ecotypes. Water‐use is lower and stress onset slower in low compared to high rainfall ecotypes. Water‐use rates and ecotypic differences in stress response (Ψleaf decline, leaf loss) are lower in NLL than yellow lupin (YL). To mitigate the effects of profligate water use, high rainfall YL ecotypes maintain higher leaf water content over declining leaf water potential than low rainfall ecotypes. There is no evidence for such specific adaptation in NLL.
  • The data suggests that appropriate phenology is the key adaptive trait to rainfall gradients in NLL because of the flow‐on effects on biomass production, fitness, transpiration and stress onset, and the lack of physiological adaptations as in YL. Accordingly, it is essential to match phenology with target environment in order to minimize risk and maximize yield potential.
  相似文献   
6.
7.
Animal experiments have demonstrated that individuals exhibit differing tendencies to arrest growth and resorb muscle tissue under nutritional stress. Since placental and adrenocortical hormones are active in promoting muscle tissue resorption, sex differences may exist. In order to identify such sex differences, the upper arm circumferences of 362 individuals, aged one to 60 years, living in an area of chronic protein-calorie malnutrition were compared by age and sex with published data collected from U.S. and highland Peruvian populations. Sexual dimorphism for arm muscle circumference in the malnourished population is less than in U.S. samples of comparable age-categories. The highland population is closer to U.S. samples in the degree of dimorphism. The reduction in muscle circumference of males in the malnourished population appears to be the cause of the comparatively greater similarity of the sexes where protein-calorie malnutrition is experienced from infancy through adolescence. High muscle relief and excellent tonus in these same males indicate that reduced muscle circumference is not the result of flaccidity or higher ratios of compressible fat to muscle tissue. Reduction of muscle tissue in undernourished males is a reduction in total metabolic demand. Such reductions are adaptive in areas of chronic nutritional stress.  相似文献   
8.
Phylogenetic analyses of lekking, lek spatial organization, and cooperative and coordinated lek display in the manakins (Aves: Pipridae) demonstrate that variation in social behavior in the group has a strong, phylogenetic component. Two of the three classes of social behavior examined also show significant phylogenetic constraints. Current adaptive plasticity models are insufficient to explain the phylogenetic variation in these behaviors in the manakins. These findings support the conclusion that vertebrate reproductive social behavior has an evolutionary history, and that it is not determined solely by adaptive individual plasticity to current conditions. The evolution of social behavior, particularly through sexual selection, can have historical consequences that can limit subsequent behavioral adaptation.  相似文献   
9.
Adaptation to salinity at the plant cell level   总被引:3,自引:0,他引:3  
Summary Various mechanisms of adaptation of plant cells to salinity are reviewed: (1) protection of enzymes and maintenance of turgor by organic solutes; (2) prevention of ion toxicity by compartmentation; and (3) energization of solute transport by the proton pump. All these mechanisms seem to play a role in adaptation. The particular advantages of using salt-adapted cells in suspension culture to identify mechanisms of adaptation are pointed out.  相似文献   
10.
1. Elevated CO2 can alter plant physiology and morphology, and these changes are expected to impact diet quality for insect herbivores. While the plastic responses of insect herbivores have been well studied, less is known about the propensity of insects to adapt to such changes. Genetic variation in insect responses to elevated CO2 and genetic interactions between insects and their host plants may exist and provide the necessary raw material for adaptation. 2. We used clonal lines of Rhopalosiphum padi (L.) aphids to examine genotype‐specific responses to elevated CO2. We used the host plant Schedonorus arundinaceus (tall fescue; Schreb), which is capable of asexual reproduction, to investigate host plant genotype‐specific effects and possible host plant‐by‐insect genotype interactions. The abundance and density of three R. padi genotypes on three tall fescue genotypes under three concentrations of CO2 (ambient, 700, and 1000 ppm) in a controlled greenhouse environment were examined. 3. Aphid abundance decreased in the 700 ppm CO2 concentration, but increased in the 1000 ppm concentration relative to ambient. The effect of CO2 on aphid density was dependent on host plant genotype; the density of aphids in high CO2 decreased for two plant genotypes but was unchanged in one. No interaction between aphid genotype and elevated CO2 was found, nor did we find significant genotype‐by‐genotype interactions. 4. This study suggests that the density of R. padi aphids feeding on tall fescue may decrease under elevated CO2 for some plant genotypes. The likely impact of genotype‐specific responses on future changes in the genetic structure of plant and insect populations is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号