首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica
Authors:Worland M Roger
Institution:British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK. mrwo@bas.ac.uk
Abstract:Effects of 12 biotic and abiotic factors on the freezing point of the sub-Antarctic springtail, Tullbergia antarctica, were investigated. Repeated cooling of individual springtails five times resulted in very similar freezing points suggesting that ice nucleation in this freeze-susceptible species is likely to be initiated by intrinsic factors rather than being a stochastic event. Mean supercooling point (SCP) was influenced by cooling protocol, showing a linear increase in mean SCP with cooling rates from 8 to 0.1 degrees Cmin(-1). However, the opposite effect (decreasing SCP) was seen with slower cooling. Slower rates may be ecologically realistic and allow time for appropriate physiological and biochemical changes. Feeding and food presence in the gut had no effect on SCP, and there was no correlation between the ice nucleating activity of bacteria isolated from the guts and the whole springtail SCP. Habitat altitude and diurnal light and temperature regimes also had no effect on SCP. There was no correlation between the cryoprotectant concentration of fresh animals and their SCP, but experimental desiccation resulted in increased osmolality and decreased SCP, although with considerable individual variation. The most significant influence on SCP was associated with ecdysis. As springtails cease feeding for a period either side of ecdysis, shedding the entire gut lining, moulting may be an efficient mechanism of clearing the gut of all ice nucleating material. This previously unrecognised relationship between ecdysis, cold tolerance and seasonal survival tactics may play an important role in over-winter survival of some arthropods.
Keywords:Cold tolerance  Cooling rate  Desiccation  Differential scanning calorimeter  Feeding  Freezing  Gut contents  Moulting  Rapid cold hardening  Starvation  Supercooling point
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号