首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Combining a modelling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake
Authors:Matthias Wissuwa
Institution:(1) International Rice Research Institute, Crop, Soil, and Water Sciences Division, Los Banos, Laguna, The Philippines
Abstract:The Pup1 locus confers tolerance to phosphorus (P) deficiency in rice (Oryza sativa L.). Transferring the Pup1 locus to an intolerant genotype increased P uptake by a factor 3 to 4. Lines with the Pup1 locus maintained higher root growth rates under P deficiency, but only as they started to diverge from intolerant lines in P uptake. It was thus not possible to determine if differences in root growth preceded and caused differences in P uptake or whether high root growth was the result of higher external P uptake efficiency (P influx per root size). The purpose of this paper is to review experimental evidence on the effect of Pup1 in light of recent results in modelling cause-and-effect relations between root growth, external efficiency and P uptake. Model simulations suggested that only very small changes in factors enhancing root growth were needed to explain the effect of Pup1 on P uptake. A 22% increase in root fineness or in internal P utilization efficiency (root dry matter per root P) was sufficient to triple P uptake . External root efficiency had to increase by 33 to account for the effect of Pup1. However, the most noticeable effect of increases in external efficiency was a subsequent stimulation of root growth that contributed eight times more to final P uptake compared to the change in external efficiency. Comparisons of model simulations with empirical data suggested that measured differences in external efficiency between Nipponbare and NIL-Pup1 were sufficiently large to account for the increase in P uptake. A segregation analysis using several pairs of contrasting NILs (at the Pup1 locus) further confirmed this as Pup1 co-segregated with external efficiency but not with seedling root growth or internal efficiency.
Keywords:genotypic difference  modelling  near-isogenic line  phosphorus uptake  phosphorus efficiency  QTL  root growth
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号